
SPSS—描述性统计分析—探索性分析
菜单
除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。
适用范围
对资料的性质、分布特点等完全不清楚的时候
Analyze -> Descriptive Statistics -> Expore
数据源
ceramics.sav
因变量列表
用于选入待分析的变量
因子列表
用于选择分组变量,根据该变量取值不同,分组分析因变量列表中的变量
标注个案
选择标签变量
统计量
描述性
计算一般的描述性统计量,及指定的均数可信区间
M-估计量
描述集中趋势的统计量,用于稳健估计
界外值
分别输出5个极大值和极小值
百分位数
输出变量5%,10%,25%,50%,75%,90%,95%分位数
绘制
带校验的正态图
选择是否进行正态校验,且是否输出相应的Q-Q图
伸展与级别Levene检验
当选入分组变量时,该功能才被激活,主要用于比较各组之间的离散程度是否一致。在这里可以选择“未转换”,用于方差齐性检验
选项
输出结果
个案处理分析结果
包括观测量、缺失值等信息
描述性统计量
包括:均值、95%置信区间、方差、中位数、标准差、最大最小值、偏度和峰度等信息
集中趋势分布的3种较佳平稳测度
较佳测度之一:中位数等
中位数
与均值和众数大不相同,中位数是依赖于数据的主体部分而不是极值,因此它的值不是过分地受某几个观察值的影响
平稳估计量
如果对数据来源的总体做出某个假设(比如假定服从正态分布),则会有更佳分布位置的估计量,这种估计量称为平稳或稳健测度的估计量
较佳测度之二:修正均值
由于均值深受极端值影响,因此可通过去掉一些远离主体数据的极端值,进而获得一个对于分布位置简单而平稳的估计量
5%修正均值
是通过去掉所有观察值中最大的5%和最小的5%的数据而获得
调整后的均值与中位数可更好的利用数据
较佳测度之三:M估计
将极端值计算在内,而赋予比靠近中央值较小的一个权重,这种方法可借助M估计或采用广义最大似然估计
M-estimators:平稳分布位置的最大似然估计量
Huber的M估计值
Tukey双权重估计值
Hampel重复递减M估计值
Andrew波形估计值
M-估计器
极值
这里用标注个案来标记极值
正态性检验
其中Premium变量对应的K-S检验P值和Shapiro-Wilk检验P值均为0.000,非常显著,应该拒绝原假设。所以,此变量的数据分布不是正态分布。
而Standard数据的分布不是显著的,可以认为是正态分布
在‘探索’里出现的Kolmogorov-Smirnov 检验,它的右上角有一个a 的注释号。它将Kolmogorov-Smirnov 检验改进用于一般的正态性检验。
而在‘非参数检验’里出现的Kolmogorov-Smirnov 检验,是没有经过纠正或改进的。
该正态性检验只能做标准正态检验。
SPSS规定:当样本含量3≤n≤5000 时,结果以Shapiro—Wilk(W 检验)为难,当样本含量n>5000 结果 以Kolmogorm —Smimov(D检验)为准。
问题:
(1) 在实际应用中常出现检验结果与直方图、正态性概率图不一致,甚至几种假设检验方法结果完全不同的情况。
(2) Shapiro—Wilk 检验(Ⅳ 检验)和经过Lilliefors 显著水平修正的Kolmogorov—Smirnov 检验(D 检验)是用 一个综合指标(顺序统计量Ⅳ 或D)来判定资料的正态性由于两种方法都是用一个指标反映资料的正态性,
所以当资料的正态峰和对称性两个特征有一个不满足正态性要求时,两种方法出现假阴性错误的机率均较 大;而且两种方法的检验统计量都是进行大小排序后得到,所以易受异常值的影响。
(3) Kolmogorov—Smirnov 单一样本检验是根据实际的累计频数分布和理论的累计频数分布的最大差异来检验资料的正态性,可对正态分布进行拟合优度检验。但它并非检验正态性的专用方法,因此它的检验效率是最低的,最容易受样本量和异常值等因素的影响。
方差齐性检验
假设检验:
H0: 两样本方差齐性(相等,或无显著性差异)
如上图,Sig > 0.2,并无显著差异。
正态Q-Q图
正态性检验可以通过直观的Q-Q图,进行人工验证。
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图. 要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值.
如上图,batch=Standard Q-Q图上的点在一条直线附近,可以认为是正态分布,和正态性检验Lilliefors,Shapiro-Wilk得出的结果一致。
反趋势正态 Q-Q 图
如上图,反趋势正态概率Q-Q图以变量的观测值为X坐标,以变量的Z得分与期望值的偏差为Y坐标。
batch=Standard 图的观测点离期望值很集中,说明符合正态分布。
盒子图
Premiun中有部分异常数据,数据偏大。需要进行异常值检测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10