
SPSS Modeler数据挖掘:回归分析
1 模型定义
回归分析法是最基本的数据分析方法,回归预测就是利用回归分析方法,根据一个或一组自变量的变动情况预测与其相关的某随机变量的未来值。
回归分析是研究一个变量(被解释变量)与另一个或几个变量(解释变量)的具体依赖关系的计算方法和理论。
回归分析的主要内容:
从一组数据出发,确定某些变量之间的定量关系,即建立数学模型并估计其中的未知参数,进行可信程度检验,一般用最小二乘法估计参数。判断哪个(或哪些)自变量的影响是显著的,哪些是不显著的,将影响显著的选入模型,而提出影响不显著的,通常应用逐步回回、向前回归和向后回归等方法。
利用所求的关系式对某一生产过程进行预测或控制。
回归分析研究的主要问题:
确定Y与X之间的关系表达式(回归方程)
对求得的回归方程的可信度进行统计检验
判断自变量X对因变量Y有误影响极其程度
利用所得的回归方程进行变量的预测和控
2 模型应用
回归分析时分析现象之间相关的具体形式,确定其因果关系,并用数学模型来边线其具体关系。
一般来讲,回归分析时通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好地拟合,则可以根据自变量做出进一步预测。
R2、F检验值和T检验值。
3 建模步骤
建立变量
建立预测模型
进行相关分析
计算预测误差
确定预测值
4 应用实例:客户流失因素分析
研究背景
随着电信企业的发展,企业之间的竞争不断加剧,电信运营商在不断地推出新的业务与套餐,一次占领市场竞争高地。但是,与此同时,也大大增加了客户的不稳定性,而数据挖掘技术的应用,有效地降低了客户离网率。因此,研究数据挖掘技术在电信客户流失预警中的应用有必要性。
对于电信企业而言, 海量的客户数据是企业的一笔巨大财富,简单而讲企业若能够及时准确地挖掘出数据中的信息,并且从中分析出隐含的价值信息与知识,就能制定弧科学的运营方案,才能更好地为客户服务,进而在市场竞争中取得一席之地。
所谓的客户流失预警模型的构建就是在基于数据挖掘技术的基础上,对电信运营状态及客户状态的一种分析与判定系统,从本质上讲,就是对数据特征的一种挖掘,同时,也是一种分类问题。
客户信息主要分为两大类:一种是由离网倾向的客户;另一种是无离网倾向的客户。以数据挖掘技术为基础,对已离网客户的信息进行特征分析,进行总结归纳,并作参考,若企业产生新的客户信息时,一次来识别其是否存在离网倾向,确定其是否在企业对客户维护开销范围外,若低于次开销值,则说明其不具有任何产生价值,相关信息应该删除。
5 研究方法
在客户流失分析系统中,根据以前拥有的客户流失数据建立客户属性、服务属性、客户消费数据与客户流失可能关联的数学模型,找出客户属性、服务属性、客户消费数据与客户流失的最终状态的关系。
4.2.3 数据分析
定义数据源
数据理解
将值为0、1的变量设为标志字段
将客户类别(custcat)设置为目标
数据准备
过滤掉无关字段
建立模型
模型采用:多项式 和 逐步法 的回归分析方法;
专家模式
模型评估
评估模型的优劣是建模过程的必须步骤,本例中采用数据审核节点和数据评估节点来对模型的结果进行评估。
研究结论
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26