
基于大数据的消费者洞察 夯实营销基础
我们可以看到,大数据洞察能够通过各方面数据比对,还原真实世界未知的事情当初是怎么发生的,能回答一系列企业感兴趣,但通常很难准确回答的问题。 如今的市场营销手段已经和过去完全不同了,广告主对营销媒介渠道和营销手段的认知、选择也发生了翻天覆地的变化。
在这个毫无疑问是史上最纷乱嘈杂的大时代里,消费者的行为不再是单纯的接受,而是更加自主,这样的关系模式导致了品牌不能依靠强制来获得关注,而要以更具渗透性的方式进行传播,这也势必要求更透彻的“Consumer Insight”即消费者洞察。
说到如何深刻了解消费者,目前的确有几种主流的洞察方式,除了传统的市场调研之外,还有基于Cookie数据的洞察,以及基于搜索行为数据的洞察,每一种消费者洞察手段都有各自的适应场景。
传统的市场调查研究对消费者进行统计分析和研究的历史悠久,手段也相应成熟,能够清晰的定义被访者的年龄、性别、职业、收入等各方面特征,按照人口属性和产品行为属性维度进行综合分析,标签和维度很多,可以形成具象的典型用户画像。
尤其是网络市场调研打破了线下调研的瓶颈,节省大量调查费用和人力,缩短信息反馈周期,在选定的地区内,获取相对庞大的样本数量。但对于用户具体行为轨迹、特定时间段数据的收集,市场调研仍有一定困难。
并且,问卷调查的表达形式、提问的顺序、答案的方式与方法都是已经设计好的,调研只是基于问题的资料收集,因此,调查问卷主体内容设计的水平,将直接影响整体调查结果的价值。
不成熟的大数据洞察
大数据时代的来临,让消费者洞察有了进一步发展的可能,数据的捕获、存储、解读和利用可以提供各种尺度上的深刻见解。不用设计问卷,大数据能在不可取样的环境、打破“无时限取样”的限制。过往洞察手段做不到的,大数据可以做到;给不出的,大数据可以给。
理想很丰满,现实很骨感。对于大数据的应用,还远远不够成熟。
有不少基于Cookie数据得出的洞察报告,通过分析数据库内每一个Cookie的网页浏览记录,找到用户的兴趣关注点,但因其数据量、过期时间、数据覆盖范围等因素,只能做较简单的数据分析,无法深度还原,很难捕捉到用户在一定时期内的准确需求。
搜索巨头们提供的基于消费者搜索行为数据的洞察也是大数据洞察的一种,搜索平台拥有庞大的用户行为数据,实时洞察消费者需求,集成数据,进行结构化分析,的确也可以做出一定程度的洞察。
但是搜索行为数据给出的洞察报告仅仅是基于特定区域内,或者局限于某特定搜索引擎的特点,掌握的是部分网络用户的部分网络行为,可以帮助企业看清楚有搜索行为这一块区域上人们的行为方式,但是无法知晓这部分人的后续动作是什么。哪些人有购买行为,哪些没有,两者有什么关系?单靠搜索行为数据,无法给出这些问题的答案。
大数据洞察的理想状态
大数据的真正价值不在于它的大,而在于它的全——空间维度上的多角度、多层次信息的交叉复现;时间维度上的与人或社会有机体的活动相关联的信息的持续呈现。
大数据不是为了任何一个应用产生的,大数据分析客观要求我们根据不同的目标,使用统计、数学模型,从多层次的数据库中抽取数据,在数据和数据的关联和聚类分析中,寻找出有价值的信息。
只要合理使用,这些庞大、多维度的数据,能够在任何地方、从任何角度以趋势图表等通俗易懂、科学合理的形式呈现出来。用以分析的数据越全面,分析的结果就越接近真实,意味着企业越能够从这些新的数据中获取更敏锐的洞察力,并将其与已知业务的各个细节相融合。
如果有能够掌握大数据标准、入口、汇集和整合过程的公司,能够获取全部网络用户和全部网络服务提供商的全部网络行为,跨网站、跨产品、跨终端、跨平台地驾驭大数据,在此基础上产生的数据洞察,无疑将为广告主带来全新的价值体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28