京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS神经网络心得(二)
输出
网络结构。显示与神经网络有关的摘要信息。
• 描述。 显示与神经网络有关的信息,包括因变量、输入和输出单位数目、隐藏层和单位数目及激活函数。
• 图表。 将神经网络图表作为不可编辑图表显示。请注意,随着协变量数目和因子级别的增加,图表变得更加难于解释。
• 键结值。 显示表明给定层中的单位与以下层中的单位之间关系的系数估计值。键结值以培训样本为基础,即使活动数据集已划分为培训数据、检验数据和坚持数据。请注意,键结值数目会变得非常大,而且这些权重一般不用于解释网络结果。

网络性能。显示用于确定模型是否“良好”的结果。注意:该组中的图表以训练集和测试集组合为基础,或者如果不存在测试集,则只以训练集为基础。
• 模型摘要。 显示分区和整体神经网络结果的摘要,包括错误、相对错误或不正确预测的百分比、用于终止培训的中止规则和培训时间。恒等、sigmoid 或双曲正切激活函数应用于输出层时,错误为平方和错误。softmax 激活函数应用于输出层时,则为交叉熵错误。
• 分类结果。 分区和整体显示每个分类因变量的分类表。每个表针对每个因变量类别给出正确或错误分类的个案数目。也报告正确分类的总体个案百分比。
• ROC 曲线。 显示每个分类因变量的 ROC(Receiver Operating Characteristic)曲线。其也显示一个给定每个曲线下区域的表格。对于给定因变量,ROC 图表针对每个类别显示一条曲线。如果因变量有两个类别,那么每条曲线将该类别视为正态与其它类别。如果因变量有两个多类别,那么每条曲线将该类别视为正态与所有其它类别的汇总。
• 累积增益图。 显示每个分类因变量的累积增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 增益图。 显示每个分类因变量的增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 观察预测图。 显示每个因变量的观察预测值图表。针对分类因变量,显示每个响应类别的预测拟概率的复式箱图,并且观察响应类别为分群变量。针对刻度因变量,显示散点图。
• 残差分析图。 显示每个刻度因变量的残差分析值图表。残差和预测值之间不存在可见模式。此图表仅针对刻度因变量生成。
个案处理摘要。显示个案处理摘要表,其通过培训、检验和坚持样本整体总结分析中包含和排除的个案数。
自变量重要性分析。 执行敏感度分析,其计算确定神经网络的每个预测变量的重要性。此操作创建一个显示每个预测变量的重要性和标准化重要性的表和图表。请注意,如果存在大量预测变量或个案,敏感度分析需要进行大量计算并且很费时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12