京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SPSS进行多变量数据分析
1.将所给的数据输入SPSS 22.0中文版。分别设置变量为温度,体重1、2、3、4;体重,温度5、10、15、20、30。
2.用SPSS进行作图(过程略)。
3.对数据进行多因素变量分析,具体操作如下:
(1)以体重组和温度5、10、15、20、30作为变量,在菜单里选择分析->比较平均值->单因素ANOVA,将体重组选入“因子”,将温度5、10、15、20、30选入“因变量列表”,在“事后多重比较”中选中Tukey-B(视情况选择其他),分别修改显著性水平为0.05、0.01,点击“选项”,勾选“描述性”,然后点击确定,得到输出结果,把结果导出到Excel里。
(2)以温度和体重组1、2、3、4作为变量,再次重复上述步骤,其中将温度选入“因子”,将体重组1、2、3、4选入“因变量列表”,其余操作步骤相同。
(3)根据SPSS导出的数据,处理结果如下:
表1 同一温度下,不同体重组之间显著性分析结果
Table 1 The significant results of different weight at the same temperature
从表1可以得出结论:
1.在alpha = 0.05水平上,在5℃时,体重组1和体重组3、4有明显差异;在10℃时,体重组1和3、4之间有明显差异,体重组2和4之间有明显差异;在15℃和20℃时,体重组1、2和3、4之间有明显差异;在30℃时,各体重组之间无明显差异。
2.在alpha = 0.01水平上,在5℃时,体重组1、2和4之间有明显差异;在10℃时,体重组1和4之间有明显差异;在15℃时,体重组1和3、4,2和4之间有明显差异;在20℃和30℃时,各体重组之间无明显差异。
注:有不同字母即代表有明显差异。
表2 同一体重组下,不同温度之间显著性分析结果
Table2. The significant results of different temperature at the same weight
从表2可以得出结论:
1.在alpha =
0.05水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异,温度10、15、20和30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
2.在alpha = 0.01水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
结论:
由以上分析可以得出结论,蜗牛的初始体重和所处的温度都对取食量有一定的影响。在温度较低时,体重差别大的取食量差别也大,温度较高时则没有明显差别。在体重较低时,取食量受温度影响较为明显,在体重较高时,5℃和10℃及以上温度有明显差别,10℃、15℃、20℃、30℃之间则无明显差别。
注:本人非此专业学生,因此文中如有错误,恳请大家批评指正。
附Excel原始数据:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08