京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才到底值钱在什么地方
周未跟一做人才外包服务朋友聊天,提到自己正在学习大数据技术的时候。他直接就说到他现在有需求,但就是招不到合适的人才。然后提到说现在大数据人才的价值,收入,待遇方面。可以说基本上将近到IT行业的顶级了。不由得,就开始思考,大数据人才的价值到底在什么地方?
大数据思维
个人感觉,这是首先第一个需要有的。因为我们现阶段生活在一个数据爆炸的时代,掌握良好的数据思维是对你的商业决策,乃至IT架构有很大的帮助。比如说,我们现在的数据类型很多,数据量很大。但是我们用到的却很有限,而这些有限的数据又不能够让我们产生效益。所以,大数据思维很重要。我们对未来需求,乃至业务方向的理解都需要依靠大数据。这一点,并不一定是大数据技术,比如说,你企业累积的数据里只有十几M的EXCEL信息,我们也许不会什么线性回归,决策树,只用EXCEL里边的几个统计函数也许就能达到我们的数据分析目的。
还有一点,就是大数据思维可以帮助我们站在用户的角度去考虑问题。从而提升我们的销售率,转变传统的被动销售为主动销售。
再用到我们日常生活中,这种思维也可能帮助我们去学习最适合我们的技术。很多的技术学习都已经放在了网络上,这样就降低了我们学习的成本。但是资源虽然多,如何去伪存真?用有限的时间去学习更多的知识才是我们最应该掌握跟学习的。在这方面我设置的决策条件就是:由于技术的相通性,短期能够学会,能够在实际使用过程中用到。这项技术能够给自己创造相应的收入。关于看书,也有相应的决策条件:纸质书为主,技术类的纸质书一天50页左右。要有相应的思考,看完一本书要有相应的摘抄,有思考总结。尽量不要看电子纸,若看电子书,基本要求在30分钟之内可以看完的。
营销商业能力
实际上,一名真正的大数据人才,在技术上除了要出类拔萃外,在相应的商业模式上也要有一些自己的领悟与见底。说得简单点,就是销售的能力也要很好,尤其是在中国!不光要能讲出大数据的用途,方法,能为企业创造 的价值。而且还要能够很好地让大数据技术去落地,不要整天云里雾里,最重要的落地才是最为重要的。
这一方面,个人的理解就是:你技术再好不重要,只有适合我们企业的才是最重要的。也就是说在讲解技术的过程中相关的目的导向很重要。营销商业活动中最为重要的就是要成交,若你只是口若悬河的去讲技术实现,却不告诉对方你能够为对方创造的价值,这样无疑就是一次失败的讲解。
技术学习能力
说到技术,实际上大数据人才要掌握的技术是有一点难度,就从自身的角度来说,要掌握相应的编程能力最好。而现在的大数据平台主要基于的是SPARK,部分早期的还有用到HADOOP+MAPREDUCER的。相应的数据挖掘主流是SAS与SPSS,数据展现方面的是R.而这一些软件的学习都要求我们有一定的编程基础。
其次要对架构有一定的掌握,比如说,数据仓库的架构,数据挖掘模型的架构,数据存储的架构,网络的架构,等等。
除了掌握这些,一些操作系统的底层内容。也就是一些硬件属性也要有一定了解。比如说存储的选择,操作系统的选择,优化,等等。
实际上,以上的任何一门技术都是可以达到高薪的程度,而大数据技术又是将这几项技术综合。所以,我们并不一定要全部掌握所有的技术,但要具备一专多能的能力,在用到新技术的时候,我们可以很快的学会。
实际上,基于以上三种能力,后期发展会有多方面的变化,比如说最基本的与人沟通能力,这一点也是做技术的人员可能最为稀缺的能力。总之,大数据人才也就是技术中上能力+营销高手的一个组合。其他的方面,还有外语能力,文档开发能力,讲课能力这一些,都可以通过后期的训练成就。
还有一点,就是现在大数据正火。而相应的,大数据人才能够在短期内为企业创造价值的能力也强调很高。
大数据人才值钱的最根本点,就是你能够为企业创造更大的收益。这种收益,可能是金钱上,可能是名誉上,也可能是活跃客户上。但是,一个大数据人才,你的学习,不能停止,将会随着业务需求的不同而不断改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27