京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才到底值钱在什么地方
周未跟一做人才外包服务朋友聊天,提到自己正在学习大数据技术的时候。他直接就说到他现在有需求,但就是招不到合适的人才。然后提到说现在大数据人才的价值,收入,待遇方面。可以说基本上将近到IT行业的顶级了。不由得,就开始思考,大数据人才的价值到底在什么地方?
大数据思维
个人感觉,这是首先第一个需要有的。因为我们现阶段生活在一个数据爆炸的时代,掌握良好的数据思维是对你的商业决策,乃至IT架构有很大的帮助。比如说,我们现在的数据类型很多,数据量很大。但是我们用到的却很有限,而这些有限的数据又不能够让我们产生效益。所以,大数据思维很重要。我们对未来需求,乃至业务方向的理解都需要依靠大数据。这一点,并不一定是大数据技术,比如说,你企业累积的数据里只有十几M的EXCEL信息,我们也许不会什么线性回归,决策树,只用EXCEL里边的几个统计函数也许就能达到我们的数据分析目的。
还有一点,就是大数据思维可以帮助我们站在用户的角度去考虑问题。从而提升我们的销售率,转变传统的被动销售为主动销售。
再用到我们日常生活中,这种思维也可能帮助我们去学习最适合我们的技术。很多的技术学习都已经放在了网络上,这样就降低了我们学习的成本。但是资源虽然多,如何去伪存真?用有限的时间去学习更多的知识才是我们最应该掌握跟学习的。在这方面我设置的决策条件就是:由于技术的相通性,短期能够学会,能够在实际使用过程中用到。这项技术能够给自己创造相应的收入。关于看书,也有相应的决策条件:纸质书为主,技术类的纸质书一天50页左右。要有相应的思考,看完一本书要有相应的摘抄,有思考总结。尽量不要看电子纸,若看电子书,基本要求在30分钟之内可以看完的。
营销商业能力
实际上,一名真正的大数据人才,在技术上除了要出类拔萃外,在相应的商业模式上也要有一些自己的领悟与见底。说得简单点,就是销售的能力也要很好,尤其是在中国!不光要能讲出大数据的用途,方法,能为企业创造 的价值。而且还要能够很好地让大数据技术去落地,不要整天云里雾里,最重要的落地才是最为重要的。
这一方面,个人的理解就是:你技术再好不重要,只有适合我们企业的才是最重要的。也就是说在讲解技术的过程中相关的目的导向很重要。营销商业活动中最为重要的就是要成交,若你只是口若悬河的去讲技术实现,却不告诉对方你能够为对方创造的价值,这样无疑就是一次失败的讲解。
技术学习能力
说到技术,实际上大数据人才要掌握的技术是有一点难度,就从自身的角度来说,要掌握相应的编程能力最好。而现在的大数据平台主要基于的是SPARK,部分早期的还有用到HADOOP+MAPREDUCER的。相应的数据挖掘主流是SAS与SPSS,数据展现方面的是R.而这一些软件的学习都要求我们有一定的编程基础。
其次要对架构有一定的掌握,比如说,数据仓库的架构,数据挖掘模型的架构,数据存储的架构,网络的架构,等等。
除了掌握这些,一些操作系统的底层内容。也就是一些硬件属性也要有一定了解。比如说存储的选择,操作系统的选择,优化,等等。
实际上,以上的任何一门技术都是可以达到高薪的程度,而大数据技术又是将这几项技术综合。所以,我们并不一定要全部掌握所有的技术,但要具备一专多能的能力,在用到新技术的时候,我们可以很快的学会。
实际上,基于以上三种能力,后期发展会有多方面的变化,比如说最基本的与人沟通能力,这一点也是做技术的人员可能最为稀缺的能力。总之,大数据人才也就是技术中上能力+营销高手的一个组合。其他的方面,还有外语能力,文档开发能力,讲课能力这一些,都可以通过后期的训练成就。
还有一点,就是现在大数据正火。而相应的,大数据人才能够在短期内为企业创造价值的能力也强调很高。
大数据人才值钱的最根本点,就是你能够为企业创造更大的收益。这种收益,可能是金钱上,可能是名誉上,也可能是活跃客户上。但是,一个大数据人才,你的学习,不能停止,将会随着业务需求的不同而不断改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13