
大数据人才到底值钱在什么地方
周未跟一做人才外包服务朋友聊天,提到自己正在学习大数据技术的时候。他直接就说到他现在有需求,但就是招不到合适的人才。然后提到说现在大数据人才的价值,收入,待遇方面。可以说基本上将近到IT行业的顶级了。不由得,就开始思考,大数据人才的价值到底在什么地方?
大数据思维
个人感觉,这是首先第一个需要有的。因为我们现阶段生活在一个数据爆炸的时代,掌握良好的数据思维是对你的商业决策,乃至IT架构有很大的帮助。比如说,我们现在的数据类型很多,数据量很大。但是我们用到的却很有限,而这些有限的数据又不能够让我们产生效益。所以,大数据思维很重要。我们对未来需求,乃至业务方向的理解都需要依靠大数据。这一点,并不一定是大数据技术,比如说,你企业累积的数据里只有十几M的EXCEL信息,我们也许不会什么线性回归,决策树,只用EXCEL里边的几个统计函数也许就能达到我们的数据分析目的。
还有一点,就是大数据思维可以帮助我们站在用户的角度去考虑问题。从而提升我们的销售率,转变传统的被动销售为主动销售。
再用到我们日常生活中,这种思维也可能帮助我们去学习最适合我们的技术。很多的技术学习都已经放在了网络上,这样就降低了我们学习的成本。但是资源虽然多,如何去伪存真?用有限的时间去学习更多的知识才是我们最应该掌握跟学习的。在这方面我设置的决策条件就是:由于技术的相通性,短期能够学会,能够在实际使用过程中用到。这项技术能够给自己创造相应的收入。关于看书,也有相应的决策条件:纸质书为主,技术类的纸质书一天50页左右。要有相应的思考,看完一本书要有相应的摘抄,有思考总结。尽量不要看电子纸,若看电子书,基本要求在30分钟之内可以看完的。
营销商业能力
实际上,一名真正的大数据人才,在技术上除了要出类拔萃外,在相应的商业模式上也要有一些自己的领悟与见底。说得简单点,就是销售的能力也要很好,尤其是在中国!不光要能讲出大数据的用途,方法,能为企业创造 的价值。而且还要能够很好地让大数据技术去落地,不要整天云里雾里,最重要的落地才是最为重要的。
这一方面,个人的理解就是:你技术再好不重要,只有适合我们企业的才是最重要的。也就是说在讲解技术的过程中相关的目的导向很重要。营销商业活动中最为重要的就是要成交,若你只是口若悬河的去讲技术实现,却不告诉对方你能够为对方创造的价值,这样无疑就是一次失败的讲解。
技术学习能力
说到技术,实际上大数据人才要掌握的技术是有一点难度,就从自身的角度来说,要掌握相应的编程能力最好。而现在的大数据平台主要基于的是SPARK,部分早期的还有用到HADOOP+MAPREDUCER的。相应的数据挖掘主流是SAS与SPSS,数据展现方面的是R.而这一些软件的学习都要求我们有一定的编程基础。
其次要对架构有一定的掌握,比如说,数据仓库的架构,数据挖掘模型的架构,数据存储的架构,网络的架构,等等。
除了掌握这些,一些操作系统的底层内容。也就是一些硬件属性也要有一定了解。比如说存储的选择,操作系统的选择,优化,等等。
实际上,以上的任何一门技术都是可以达到高薪的程度,而大数据技术又是将这几项技术综合。所以,我们并不一定要全部掌握所有的技术,但要具备一专多能的能力,在用到新技术的时候,我们可以很快的学会。
实际上,基于以上三种能力,后期发展会有多方面的变化,比如说最基本的与人沟通能力,这一点也是做技术的人员可能最为稀缺的能力。总之,大数据人才也就是技术中上能力+营销高手的一个组合。其他的方面,还有外语能力,文档开发能力,讲课能力这一些,都可以通过后期的训练成就。
还有一点,就是现在大数据正火。而相应的,大数据人才能够在短期内为企业创造价值的能力也强调很高。
大数据人才值钱的最根本点,就是你能够为企业创造更大的收益。这种收益,可能是金钱上,可能是名誉上,也可能是活跃客户上。但是,一个大数据人才,你的学习,不能停止,将会随着业务需求的不同而不断改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27