
后Excel时代,如何变身讲述“数据故事”的高手?
如何看待数据分析师这项职业?
CDA记者:如今, 数据分析师是一个很热门的职业,薪资水平普遍很高。很多人也因为高薪,纷纷向数据分析师发展。您如何看待这种现象?
刘鹏元:首先,对求职者来说,工资导向是很正常的市场规律,前提是你要具备相应的技能和能力。其次,对企业来说,正是因为“大数据时代”给其带来了新的挑战和机会,“数据分析师”、“数据科学家”这样的岗位,才在企业内部变得愈加重要了。
数据小白生存之道
CDA记者:对于行业小白来说,想要成为专业的数据分析师,需要具备怎样的技能?
刘鹏元:在大数据时代,“小白”必须成长为“专家”才能够真正立足。如果一个普通的销售人员在使用了工具后对于数据的分析能力都比一个“小白”强,那企业为什么需要这样的数据分析师呢?在大数据时代,一个优秀的数据分析师至少需要具备以下三方面的能力:
首先需要掌握更加丰富的大数据处理技能,包括统计分析、可视化工具、大数据处理框架、数据挖掘等;
其次,要对企业业务有更深的理解,能够根据企业自身特点建立分析模型和方法,不断地进行探索式分析;
最后,能把分析结果以可视化的形式展现出来,让别人秒懂你的结论,成为讲述“数据故事”的高手。
除了要掌握专业技能外,还应该注意以下几点,从而更快的适应市场需求。
l 多读科技类新闻和文章,关注大趋势和行业动态;
l 多与行内人员交流、取经;
l 对于与自身工作交集较大的职位,多花时间了解其特点和工作内容,便于工作中快速沟通和协作;
l 多反思和复盘工作中的问题,逐步形成一套行之有效的工作方法和思考方式;
l 多站在上司和老板的角度思考工作目标。
讲“数据故事”的工具选择
CDA: 现在市场上充斥着以Excel为代表的传统工具和以BI为代表的新型工具,那么您是如何看待新旧BI工具的更替?数据分析师选择工具时关注的点应该有哪些?
刘鹏元:当大数据时代到来时,我们就已经进入了“后Excel时代”。“后Excel时代”的含义是:Excel已经成为了“小数据”的专用工具,“大数据”需要更强大、更智能、更具探索性的新工具。所以,新旧工具的交替是无法避免的,谁都无法阻挡时代的潮流。数据分析师选择工具时,可以从以下几点考察:
l 是否能接入企业各种业务系统,整合多源异构数据?
l 是否拥有实时的数据处理能力?
l 是否操作简单,简单拖拽即可生成可视化图表?
l 是否提供探索式分析功能,类似数据分析维度和颗粒度都可以随意变换?
l 是否拥有智能的图表和模型推荐?
l 是否可以云端协作和分享,从而满足各种移动办公的场景的需求?
关于数据分析师个人发展的一些建议
刘鹏元:其实各行各业都是相通的,分享4个关键词吧:阅读、思考、交流、实战。
1、要保证大的阅读量,包括阅读各类文章和图书,这是基础;
2、阅读和工作中如有疑问和发现,就多思考和总结,这是关键;
3、多向牛人请教,这是很有益的补充;
4、学会和享受“以战代练“,通过实际的工作来提升自身的能力,在反思和复盘中提高,这是根本。
人物介绍
刘鹏元
DataHunter产品总监,负责公司企业数据分析平台的整体产品工作。拥有多年的产品经理工作经验,其中大部分时间都在从事数据类产品工作,包括搜索引擎、第三方数据平台、企业BI产品等。
关于DataHunter
DataHunter(北京数猎天下科技有限公司)是一家专注于数据可视化分析展示的科技公司,成立于2016年。基于先进的探索式数据分析技术,DataHunter致力于为企业提供简单易用的业务数据可视化分析产品及数据大屏设计展示服务,帮助用户发现问题并改进业务,从而驱动企业向数字化运营转变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05