
5点大数据挖掘要注意 学会整理数据和管理客户流量
互联网+大数据已离不开我们的生活,在企业运作中也是同理。要想让企业快速发展起来,学会利用数据是必备基础之一。本文来源于科技博客 VentureBeat,作者是游戏开发平台GameSalad CEO Stephen Nichols,通过分享自己的企业在数据利用上的经验,提醒众多的创业者不能只凭感觉行走,要用数据说话。
不管是多么小型的创业公司,对于数据挖掘这块都必须要不断扩大、不断深入。拥有越多的数据来源,有更多的数据可以分析,进而得出更准确完美的结论,最终才能更成功地为特定客户群服务。
我们公司在做自己的数据驱动工作时学到的最大教训是——在建立产品之前先努力做好数据和情报的收集分析,并且,从第一天开始就把高度注意力放到用户上。以下是对待数据需要注意的5个要点,或将有助于你从数据中挖掘有价值的信息。
1.先收集用户数据
做数据驱动前,先做好对用户的数据收集。不断挑战自己的假设:用户会是谁?你希望他们是谁?虽然可能先是简单地对网站的访客进行调查,例如询问“是什么促使您来到我们的网站?”但这其中也蕴含着你很有可能忽略的重要信息。
利用有效的工具(如实际用户行为的录像记录)去分析人们从一开始到最终买单的浏览过程是怎么变化的,是什么让他们访问这个页面,而不是其他页面?衡量用户在做什么,并确定哪些关键绩效指标(KPI)需要提高。产品的迭代和用户体验的提升都是让KPI往正确方向前进的因素。
在这里也可以一提很受欢迎的A/B测试(A/B测试是一种新兴的网页优化方法,可以用于增加转化率注册率等网页指标),但我并不依赖于它去做任何决定。它需要消耗大量的流量和耐心去完成统计、验证假设。在大多数情况下,最好选择忽略它,而是专注于KPI以及产品迭代。
2.一开始就从数据出发
在设计产品之初,要考虑用户群体的反馈。通过数据分析工具去分析、设计产品,多维度利用和分析这些数据,可以在以后的改造中节省很多力气。这样一来,初期的产品也可以让你和用户更近,从而观察用户和产品是如何相互影响的,而不是单纯拿一堆调查问题覆盖他们。
3.学会整理数据和管理客户流量
在我们公司,对于不同的功能我们会用不同的供应商,包括数据路径、客户支持和市场营销自动化等。Mixpanel(一家数据跟踪和分析公司)有着我 们的所有原生数据,它监控用户流量,进行留存分析,并建立了转化渠道分析。Segment.io(为移动开发者提供便利的分析数据分发服务的公司)可识别 用户,跟踪用户的活动,和路由数据到合适的地址。内部通讯可触发基于事件的消息以及处理自动化留存信息并参与到营销当中。这让我们可以确定用户的喜好,比 如他们是从哪里登录的,是怎么来到这个网页,以及他们将要去哪些网页。我们还使用了自定义路由系统,让数据保持干净,这对于成千上万的用户产生的大量事件 而言是特别重要的。
4.通过有效的策略以简化流程
我们一早就明白快速迭代的真理:宏大繁杂的设计并不可行。通过快速敏捷的模式,我们不但做到从系统上满足业务的日常需求,还腾出时间和精力去思考新的选择、探索更多的可能替代策略。
我们不断地衡量,检讨,改正,以及重复。按月或季度来计划,有助于提高灵活性。我们每天都不停地关注每个部分、每个细节,去发现我们所知道的和不知道的,一步一步解决那些最困难,最重要的问题,然后迭代产品。
在确立最适合业务发展的用户原型时,使用智能的策略避免陷入寻找原型的怪圈中。找出谁在使用你的产品,这看起来很简单,但它也涉及到查找原生数据以 及找出相关性等问题。这些程序和数据包都存在于R和Physon(数据分析主流编程语言)中,它可以帮助你决定需要哪些以及多少用户原型。
5.赋予员工更多的权限
从“用户的支持”到“用户的成功”的转变看似简单微小,但对员工的态度以及用户的满意度会产生巨大的影响。“支持”意味着一种负担,是你必须做的事 情。而“成功”意味着分享,是你想要做的事情。“让用户成功”是每个员工的职责,因此他们需要被授予权利去代表客户提出建议,被授权的员工也代表着被授权 的用户。
在过去,我们没有工具可以去了解我们的用户行为。现在我们可以看到他们在点击什么,他们是从哪里登录进来的。这样子我们就可以与每一位用户接触,不 管是通过某种渠道还是为了处理个别问题。既然我们知道了谁在访问我们的网站,那么,我们也可以通过他们来接触更广泛的人群。更重要的是,我们可以根据这些 数据继续调整产品、满足用户的需求,而不是只靠单纯的假设。
在往后的时间里,这(数据利用)将会是所有企业的一个基本能力,那些仍沉浸于靠猜测来顺应发展的都将被淘汰
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27