
Python的re模块(Regular Expression 正则表达式)提供各种正则表达式的匹配操作,在文本解析、复杂字符串分析和信息提取时是一个非常有用的工具,下面我主要总结了re的常用方法
1.re的简介
使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息。python 会将正则表达式转化为字节码,利用 C 语言的匹配引擎进行深度优先的匹配。
代码如下:
import re
print re.__doc__
可以查询re模块的功能信息,下面会结合几个例子说明。
2.re的正则表达式语法
正则表达式语法表如下:
正则表达式特殊序列表如下:
3.re的主要功能函数
常用的功能函数包括:compile、search、match、split、findall(finditer)、sub(subn)
compile
re.compile(pattern[, flags])
作用:把正则表达式语法转化成正则表达式对象
flags定义包括:
re.I:忽略大小写
re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境
re.M:多行模式
re.S:' . '并且包括换行符在内的任意字符(注意:' . '不包括换行符)
re.U: 表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库
search
re.search(pattern, string[, flags])
search (string[, pos[, endpos]])
作用:在字符串中查找匹配正则表达式模式的位置,返回 MatchObject 的实例,如果没有找到匹配的位置,则返回 None。
match
re.match(pattern, string[, flags])
match(string[, pos[, endpos]])
作用:match() 函数只在字符串的开始位置尝试匹配正则表达式,也就是只报告从位置 0 开始的匹配情况,而 search() 函数是扫描整个字符串来查找匹配。如果想要搜索整个字符串来寻找匹配,应当用 search()。
下面是几个例子:
例:最基本的用法,通过re.RegexObject对象调用
复制代码 代码如下:
#!/usr/bin/env python
import re
r1 = re.compile(r'world')
if r1.match('helloworld'):
print 'match succeeds'
else:
print 'match fails'
if r1.search('helloworld'):
print 'search succeeds'
else:
print 'search fails'
说明一下:r是raw(原始)的意思。因为在表示字符串中有一些转义符,如表示回车'\n'。如果要表示\表需要写为'\\'。但如果我就是需要表示一个'\'+'n',不用r方式要写为:'\\n'。但使用r方式则为r'\n'这样清晰多了。
例:设置flag
复制代码 代码如下:
#r2 = re.compile(r'n$', re.S)
#r2 = re.compile('\n$', re.S)
r2 = re.compile('World$', re.I)
if r2.search('helloworld\n'):
print 'search succeeds'
else:
print 'search fails'
例:直接调用
代码如下:
if re.search(r'abc','helloaaabcdworldn'):
print 'search succeeds'
else:
print 'search fails'
split
re.split(pattern, string[, maxsplit=0, flags=0])
split(string[, maxsplit=0])
作用:可以将字符串匹配正则表达式的部分割开并返回一个列表
例:简单分析ip
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('W+')
print r1.split('192.168.1.1')
print re.split('(W+)', '192.168.1.1')
print re.split('(W+)', '192.168.1.1', 1)
结果如下:
['192', '168', '1', '1']
['192', '.', '168', '.', '1', '.', '1']
['192', '.', '168.1.1']
findall
re.findall(pattern, string[, flags])
findall(string[, pos[, endpos]])
作用:在字符串中找到正则表达式所匹配的所有子串,并组成一个列表返回
例:查找[]包括的内容(贪婪和非贪婪查找)
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('([.*])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
r1 = re.compile('([.*?])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
print re.findall('[0-9]{2}',"fdskfj1323jfkdj")
print re.findall('([0-9][a-z])',"fdskfj1323jfkdj")
print re.findall('(?=www)',"afdsfwwwfkdjfsdfsdwww")
print re.findall('(?<=www)',"afdsfwwwfkdjfsdfsdwww")
finditer
re.finditer(pattern, string[, flags])
finditer(string[, pos[, endpos]])
说明:和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并组成一个迭代器返回。同样 RegexObject 有:
sub
re.sub(pattern, repl, string[, count, flags])
sub(repl, string[, count=0])
说明:在字符串 string 中找到匹配正则表达式 pattern 的所有子串,用另一个字符串 repl 进行替换。如果没有找到匹配 pattern 的串,则返回未被修改的 string。Repl 既可以是字符串也可以是一个函数。
例:
代码如下:
#!/usr/bin/env python
import re
p = re.compile('(one|two|three)')
print p.sub('num', 'one word two words three words apple', 2)
subn
re.subn(pattern, repl, string[, count, flags])
subn(repl, string[, count=0])
说明:该函数的功能和 sub() 相同,但它还返回新的字符串以及替换的次数。同样 RegexObject 有:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26