京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的关键不是“大”,而是你真的需要它吗
诸如我们听到的、看到的和正在自觉或不自觉地参与的,大数据已成为一项大工程,它无处不在。我们对待它就像在迎接自己的终生伴侣,兴奋之情溢于言表。每个人都在想:“嘿,大数据时代来了,我能从中得到什么好处呢?”从社交媒体、初创公司到北京的中关村,人们都在研究和部署大数据。
但是,正如前面我们提到的,大数据不是无源之水,你需要一个充足的理由来为它打开大门,让它进入你的世界;同时,你还需要为此付出不菲的代价。大多数公司缺乏预算,它们花不了大价钱来部署大数据技术解决方案,也请不起相关团队和大数据工程师。
大数据首先是一项产业,根据一份报告显示,2012年大数据带动了全球近300亿美元的IT支出,预计再过4年这个数字将超过2500亿美元。还有许多新兴国家难以预料的市场空间没有计算在内。要知道,这几乎是一个中等发达国家的全年国内经济总产值了。
那些使用大数据的辉煌案例到处都是,但距离某些特定人群总是如此遥远。比如,脸书的推广人员骄傲地说,他们每天要存储大约100TB的用户数据;美国国家安全局(NSA)每天要处理约24TB的数据。惊人的数字!确实令我们印象深刻。可是处理这些数据所需要的成本是多少呢?根据一项公开资料显示,NSA需要为45天的数据存储服务支付超过百万美元的费用,这个成本还在继续增加。在我几年的走访中,大多数公司的CIO也对我说,他们的预算支付不起大数据部署的成本。
所以,这是昂贵的门槛——公司如果想获得大数据服务,第一件要解决的事情就是提供充足的财务预算。
没钱?对不起,这不是卖白菜,也不是批发廉价商品或请几个经理人那么简单。因此我经常听到人们抱怨:“大数据太贵了!”个人和企业都在仰天叹息,但同时又充满渴望。问题是,你真的需要它吗?
数据存储和处理的成本如此之高,成本变成了阻碍每一个人拥抱大数据的最大障碍,就像其他一切新生事物一样。以至于我们普通人——中小企业需要寻求其他的解决方案,让规模较小的公司和个体不被“大数据”拒之门外。
◆ 方案一:大数据的关键不是“大”。
大数据就一定“大”吗?虽然全球最大的科技公司都需要和PB级规模的数据打交道,它们当之无愧地成为对海量数据处理达到星级服务的用户。然而,我们的研究也表明,另外有95%的公司通常只需要使用0.5TB到40TB的数据,甚至更少。
脸书和NSA的故事并不能拿来作为普及版案例,它们不是常态。事实是,大公司的方案没有必要成为中小公司效仿的版本。在全美有5万多家公司的员工只有20到500人,它们大部分都有解决数据问题的需求,但它们并没有向脸书和NSA看齐,去建立一个成本高昂的数据帝国。
所以你看到,大数据市场最大的需求并不是那些居于世界前500强的大公司,而是排名在500到5万之间的公司。我们为何只关注那些极少数的例外,而忽视了普通的需求者呢?
将自己排除在PB级规模数据需求的用户之外,我们才有可能找到真正的方案。当大数据向我们走来时,我们应尽可能选择一个较小的接口,一样能享受同等的服务和便捷。
◆ 方案二:确定你是否真的需要它。
在向人们普及大数据时我经常在想,如果我们改变了大数据的定义,会发生什么?换一个角度,用更宏观的思维来思考它,你就能够跳出来,站在自我需求的角度去进行思考。
我们不妨这样考虑:“大数据是一种主观状态,它描述的是一个公司(个人)的基础架构(现状)无法满足其对于数据处理的需求时的情形。”
从某种意义上来说,这个判断是“灰色”的,可能没有人们想象的那么灿烂美好。没有需求就不需要大数据。不过它更贴近事实:不是所有人都必须与大数据时代接轨,当你看到它扑面而来时,你要做的第一件事是确定自己是否真的需要它,然后再采取恰当的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04