京公网安备 11010802034615号
经营许可证编号:京B2-20210330
法律大数据带来了什么
司法信息大公开,今天的法律数据日益呈几何倍数增长。法律大数据带来的变革能否带来数据质和量上的提升呢?
目前,对于“什么是法律大数据”,法律界并没有统一明确的说法。套用维克托关于大数据的认识,我们不妨将法律大数据理解为:以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张。法律大数据可能改变法律服务市场及组织机构框架,甚至改变政府与公民的关系。
法律大数据的现状事实上,在没有形成大数据这个概念及实践前,法律数字化资源早已存在,以北大法宝、北大法意、中国知网法律数据库等法律电子数据为代表,基本构成了中国法律专业人士的主要法律信息检索工具。
法律数字化资源早已成型2014年1月1日《最高人民法院关于人民法院在互联网公布裁判文书的规定》施行,要求各级人民法院应当在裁判文书生效后七日内按照规定完成技术处理在中国裁判文书网公布。随着司法信息大公开,出现了无讼、openlaw、九章等民间资本运作的法律数据库。中国裁判文书网在民间数据库某种压力的倒逼之下,于去年华丽转身,改版后的网站以强大的高级检索功能迅速得到业界广泛赞誉,更重要的是其数据来源不仅权威,而且免费。2016年3月31日最高人民法院推出的“法信——中国法律应用数字网络服务平台”正式上线,业界称之为中国版的“Westlaw”。然而法律大数据的作用远不止于此。
它并不是一堆数字化资源法律大数据并不等同于传统的法律数字化资源。
首先,传统的法律数字化资源在量上应比法律大数据概念下的数据资源要小很多,法律大数据应该是指需要处理的数据量过大,已经超出了一般电脑在处理数据时所能使用的内存量,因此必须改进处理数据的工具,采用新的处理技术,使得人们可以处理的数据量大大增加。
其次,法律大数据并不能满足于传统法律数据库单纯的法律信息汇总分类整理,法律大数据最核心的功能应是预测,通过海量的法律数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
法律大数据带来了什么?首先,法律数据行业可能面临重新洗牌。不管是Westlaw还是LexisNexis,抑或是中国本土的北大法宝、法意,虽然其固有优势明显、基础雄厚,但在大数据的浪潮下,官方数据统一开放,却可能使各家数据公司站在同一起跑线上,谁的大数据挖掘能力强,就可能在新一轮的竞争中脱颖而出。同时,数据公司生存模式也可能成为新一轮的竞争焦点。
其次,法律实践效能递增。对律师行业而言,法律大数据有助于律师对案件进行科学合理的预判,甚至可以预估案件审理法官的裁判倾向,对案件赔偿数额、诉讼周期、法律适用等做出分析,甚至借助系统自动生成法律文本,从而显著地节约法律实践成本。对法院系统而言,很可能在不远的将来,马克斯·韦伯提到的“自动售货机”——只要输入案件证据材料,法院就会自动吐出相应判决——将成为法院的真实写照,机器通过海量数据对比,筛选同类案件,给出参考判决意见,促进类案同判和量刑规范化。
再次,法学研究范式转变。南京邮电大学信息产业发展战略研究院院长王春晖表示:“法律大数据很有可能是一场法律研究范式的革命。”
大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。
大数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。可以预计,各种民间的专业化大数据研究机构将不断兴起,法律数据分析师、知识管理师将部分取代传统专家型地位,法学研究价值将不断提升,甚至成为专业服务传统律所、政府购买服务对象的第三方机构。
法律大数据来势汹涌,但面临的瓶颈也是显而易见的。长期从事信息公开研究的上海政法学院肖卫兵教授表示:法律大数据的实现离不开数据的可得性,政府的工作重点仍应该放在信息开放维度上。政府在明确数据发布来源之后,应同时确保数据来源真实完整,并鼓励民间竞争,充分挖掘数据深度价值,提升数据附加值,使得公众可以轻松便捷地获取、分享和受益于公开透明的政府、行业及司法数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31