京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		用好气象大数据,更大程度减灾防灾
在大数据时代,气象服务在不断拓宽领域,从最基础的天气预报到现有的气候预测、气候可行性论证、公共气象服务、专业专项气象服务、气象防灾减灾,为社会创造财富、减轻损失,大数据已成为气象服务不断创新和完善的重要支撑。
	
天气预报同大量数据“打交道”
毫不夸张地说,气象部门就是一个超大的数据库,里面存储了海量的数据。从业务角度对气象数据进行划分,包括气象观测数据和气象产品数据。
气象观测数据是开展各项气象业务的基础,人们从电视、报纸或网站获取的天气预报信息,其后有着非常庞杂的数据采集,包括全国2000多个地面站、120多个高空探测站、6颗在轨卫星、5万多个自动监测站、600多个农业监测站、300多个雷达站等,逐日逐小时甚至到逐分钟扫描着各种各样的大气数据。
针对不同领域、不同行业,气象部门还要制作相应的气象产品。例如提供给政府的决策气象服务,水利、电力、交通、农业等部门对气象也各有需求。
已知数据 模拟几千年前气象
量化一切,是数据化的核心。就气象数据自身而言,我们可以由已知的数据模拟得到过去几千年、几万年甚至更久以前的气象数据,也可以通过这些数据去预测多年后的气象环境。
大数据时代观点认为,对大数据进行相对简单的相关运算,永远比对小数据进行复杂运算得出的结果准确。在一定程度上来说,气象部门一直在做这样的事,例如我们常用到的“遥相关”、“模式耦合”等运算方法,正是在寻求气象要素之间,以及气象与其它事物之间的相关关系。
气象部门现有的服务包括面向政府的决策气象服务,面向社会群体的公众气象服务,面向水利、电力、交通、农业以及其它部门或企业的专业专项服务,以及针对干旱、暴雨洪涝、森林火险、冰雹、雷电等灾害性天气的气象灾害预报预警服务。而气象预警的确定,需要非常复杂的气象数据分析,再综合地形、地貌等数据以及预报员自身的经验进行分析。
云计算助力防灾减灾
气象数据的大量搜集、处理和分析,对硬、软件的要求更为苛刻,传统的处理设备难以满足大数据处理的功能和性能要求。大数据与云计算是一个问题的两面,一个是问题,一个是解决问题的方法。
当越来越多的需求出现时,向虚拟的“云端”提出申请,“云端”为该需求迅速组织计算资源,而在计算结束并将结果反馈后,“云端”又可将这些临时组织起来的资源快速释放。这样既提高了资源利用率,也使得我们不必为了复杂的运算一味追求昂贵的超级计算机。
云计算使得大数据处理更方便、更快速、更省时省力,这在气象防灾减灾中意义重大。要提高预报预警准确率、科学评估灾害,必须要纳入除气象数据以外的大量其他各行各业的数据,传统的设备无法快速处理,这无疑是和生命财产安全抢夺时间,而云计算可以很好地规避这个问题。
数据共享 打破数据壁垒
总的说来,气象大数据也就是气象数据加上行业数据分析得出事情变化规律和对未来的一些预测。
比如说能源,可以通过分析电力负荷历史,加上气象数据进行用电量估算;比如农业,可以通过某一地的农耕历史加上气候信息就可进行农作物结构调整指导;还有交通,航班准点率历史加上机场历史天气特征,就可得到航班延误预测;还有公共卫生,通过门诊量和药品销量加上气象历史就可推测发病率趋势;而在饮品方面,通过销量和气象要素关联就可掌握销量变化。
然而,在实现气象大数据的过程中,数据壁垒是一个实实在在的障碍。我们需要建立双方及多方的信息基础环境进行数据融合,对各个行业的数据都需要融合深度分析。所以,用好气象大数据,必须打破各行业之间的数据壁垒,真正做到数据共享,才能更大地实现气象大数据的价值,从而更大程度减轻灾害损失,为社会创造更多财富。
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28