京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详解python中的json的基本使用方法
在Python中使用json的时候,主要也就是使用json模块,json是以一种良好的格式来进行数据的交互,从而在很多时候,可以使用json数据格式作为程序之间的接口。
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import json
print json.load(open('kel.txt'))
#deserialize string or unicode to python object
j = json.loads(open('kel.txt').read(),encoding='utf-8')
print type(j),j
for i in j:
print i
k = json.dumps(j,encoding='utf-8').decode('utf-8')
print k
kel.txt文件内容如下:
{
"中文":"kel",
"fist":"kel"
}
执行结果如下:
{u'\u4e2d\u6587': u'kel', u'fist': u'kel'}
<type 'dict'> {u'\u4e2d\u6587': u'kel', u'fist': u'kel'}
中文
fist
{"\u4e2d\u6587": "kel", "fist": "kel"}
在其中主要使用的方法为json.loads和json.dumps
注意在loads中参数必须为string,从而在打开文件的时候,要使用read方法,否则会出错。
loads方法主要是用来加载json数据变成python中的对象,而dumps方法主要是将python对象修改为json格式。
开始遇到一个错误如下:
[root@python 56]# python kel.py
Traceback (most recent call last):
File "kel.py", line 5, in <module>
json.load(open('kel.txt'))
File "/usr/local/python/lib/python2.7/json/__init__.py", line 291, in load
**kw)
File "/usr/local/python/lib/python2.7/json/__init__.py", line 339, in loads
return _default_decoder.decode(s)
File "/usr/local/python/lib/python2.7/json/decoder.py", line 364, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/usr/local/python/lib/python2.7/json/decoder.py", line 382, in raw_decode
raise ValueError("No JSON object could be decoded")
ValueError: No JSON object could be decoded
主要原因是因为,,,在json的数据格式中必须是双引号开头的,错误的json文件如下:
{
"fist":'kel'
}
kel.py内容如下:
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import json
j = json.loads(open('kel.txt').read())
print type(j),j
双引号。。。单引号,傻傻的分不清楚
有的时候,在进行loads方法的时候,就是因为产生了单引号的字符串。。。在python中尤其如此,和其他的东西没啥关系,主要就是引号的关系!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13