京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助银行提高征信水平和风险监控能力
在智慧科技产业飞速发展的当下,以大数据技术为依托的若干大数据产品在金融领域逐渐开拓出广阔的运用空间。特别是在控制银行风险和降低不良资产领域,目前已经有了较为成熟的实践。事实上,不良贷款的产生除了受近年来国内外经济大环境影响外,还与现有的征信体系和银行传统的征信方式不适应现代经济发展的实际情况有关,而大数据正是解决这一难题的有力工具。
我国征信体系建设起步于1992年,但现有征信体系覆盖范围仍很有限。个人征信系统中反映的仅是个人或企业与银行间发生的信用情况,企业与企业间的商业信用关系以及个人与多方面的信用关系并没有得到系统的记录与反映。
与此同时,银行传统的征信方式也无法满足现代经济发展的实际情况。现代经济发展使企业和个人的经济活动发生了巨大变化,涉及范围更大、内容更加丰富,因此,衡量信用的维度更多样。银行仅仅依靠财务报表已无法了解企业的真实情况,而权威机构的公开信息系统还无法涵盖有关企业及个人社会行为的所有信用信息。这些不足导致现有银行的征信系统对客户了解的信息维度不够,信息真实性不高,信息采集、分类的科学性不强,进而使银行无法准确地对客户的诚信作出判断,对客户经营活动无从掌握,对客户的未来发展无法预测。
大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。
首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。
其次,风险量化平台可以助力贷后风险监控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。
同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。
值得一提的是,大数据技术将有效解决中小微企业融资难题。银行发展中小微企业客户既是国家的要求,也是银行自身改善客户结构的需要。但是,有融资需求的中小微企业普遍存在资产少、担保不足的问题。运用金电联行的工具,在企业提供反映其真实经营状况的历史数据的基础上,通过大数据挖掘和分析技术,可挖掘出企业真实的经营状况、健康状况、盈利能力及企业历史信用积累情况,真正展现出企业实际经营信息,并给出企业的信用等级和信用额度,从而为银行或相关金融机构提供贷款依据,缓解中小微企业融资难题,挖掘潜在优质客户。
除此之外,还可以提高信用卡发卡质量,合理增信,防止不良客户产生。大数据企业有多项独特的个人外部数据来源和评分系统来协助银行进行信用卡新卡发卡审批、审批额度、增信、交易监控等业务管理环节。
金融的本质是经营风险,如何做好风控尤为重要。特别是在当前经济新常态下,中小企业承受着不同程度的压力,银行风险开始涌现。在此背景下,金融机构如何对已贷款客户进行有效的风险度量,无疑是迫切的现实需求。由此,提前抑制风险就成为银行利用大数据技术所要实现的首要目标。
某股份制银行董事长曾谈到量化风险管理给银行带来的三大收获:“一是至少可以比其他银行跑得快一点儿;二是实现了最大限度的信息对称;三是效率与准确度大幅度提升,摆脱大量人工之后,有利于将贷后风险管理上收总行及分行,大幅提升管理透明度。”而据某商业银行测算,大数据技术能有效降低不良率47%以上。
由于大数据技术在某种程度上相当于给中小微企业加了一套体检设备,这样筛查出来的好企业,银行就敢于放贷,从而很好地解决了融资难的问题。此外,通过大数据技术催生新的金融服务模式,实现了全线上的流程再造。即将传统的人工点对点模式升级为智能、批量的高效模式,可以最大程度地降低成本,助推金融机构转型发展。
特别是,针对以往基层银行客户多、人员少,无法做到实时监控,难以及时发现风险的状况,大数据产品的运用,则可以帮助银行做到风险监控实时化、动态化,从而避免和减少损失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31