京公网安备 11010802034615号
经营许可证编号:京B2-20210330
站在大数据时代的风口,一切皆有可能
大数据一词近年炙手可热,而大数据究竟是什么或者能做什么,公众并不太清楚。当描绘大数据的时候,通常听到的会是除了身份等基本信息之外,每个人生活中的一切活动,包括消费习惯、对话、社交、移动都会被储存记录,并用以分析。这样的描述有助于增进对大数据“怎么来”的感性理解,却未能呈现它能“做什么”。随着互联网的发展和信息数字化程度的指数级增长,这些收集起来的数据集所形成的大数据,经过分析和应用,可以在国防、公共服务、医疗、金融和企业创新等各行业各方面提升效率并创造新的可能——— 服务于当下并预测甚至规划未来。
有很多令人叹为观止的新兴领域或解决方案,其实都是以大数据为基础,例如:通过收集和分析医疗数据,研发新的医疗技术;通过对各类数据的关联分析,为金融反欺诈提供决策支持;区块链也是基于大数据实时分析的产品,建成后可以大幅增进信息透明度取代人工,银行将是成本和道德风险降低的受益者;美国本月刚宣布要建立全国武力使用数据手机系统来掌握警方对平民使用暴力和拘留所死亡事件发生的频度,以防止警察滥用暴力。包括最近很受关注的人工智能(AI)在内,都和大数据紧密相关。
从2012年美国启动“大数据研究和发展”计划以来,英国、澳大利亚、日本、韩国等多个国家亦推出了一系列积极拥抱大数据的政策。当然,美国依然是这场信息革命的领头羊,无论在数据源或分析工具、可视化呈现、决策支持方面,美国都最为成功。估值最高的大数据领域企业Palantir,最突出的案例是帮助美国政府猎杀本·拉丹;Ayasdi专注于医疗数据分析和人工智能,和多个顶级美国医院、药厂都有合作;Tab-leau和DO M O都是数据可视化方面的佼佼者;而在美国总统大选中因预测而备受关注的FiveThirtyEight,则是针对政治、文化、体育运动和经济热点进行大数据分析的博客。
中国也在加快进入大数据时代的步伐,近期刚提出建设国家新型城镇化大数据库。在此时启动大数据综合试验区,是十分有价值且有预见性的尝试,广东亦有一定的技术支持和开放环境。
不过,在大数据领域,我国还处于入门阶段,基础比较薄弱。首先,最大的问题是数据源缺乏。政府是最大的数据收集者和使用者,所以各国的大数据政策中,政府数据开放都是第一步。而我国的政府数据在收集方式及储存方式上都还很传统,医保、社保及住房信息尚未全国联网,政府预算和决算等财务信息也比较粗糙,数据源本身的质量和数量都有缺漏。企业所拥有的数据就更零碎,主要集中在BAT,如阿里的淘宝和支付宝,腾讯的微信和Q Q,百度的搜索引擎,而即便BA T都尚未能对大数据进行深入分析使用。私人部门拥有的数据都很零碎,因此,很多大热产品实质上都是假借大数据之名进行关联推送等浅层使用,只是通过刷用户活跃度和讲故事来圈钱。
大数据的应用,数据源、分析方法和科研支持,缺一不可。这需要从政府到企业、从高校到非营利部门的全方位支持。无论是数据的挖掘、数据分析和使用、数据可视化,中国都才刚到门边,对于利用大数据提升公共服务质量、执政透明度、开发新医疗技术或者探讨大数据使用和隐私保护的边界,就更是门外汉。但不要紧,全世界的大数据应用也不过才开始几年而已。大数据综合试验区是令人欣喜的尝试,除了一腔热情与政策优惠,更需要技术积累与科研支持。广东既然先迈出了这一步,可以从开放数据做起,加大科研力度,放开户籍政策吸引人才,并以政府购买服务等方式激励第三方企业的技术创新。站在大数据时代的风口,一切才刚开始,一切皆有可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07