京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python优化技巧之利用ctypes提高执行速度
首先给大家分享一个个人在使用python的ctypes调用c库的时候遇到的一个小坑
这次出问题的地方是一个C函数,返回值是malloc生成的字符串地址。平常使用也没问题,也用了有段时间, 没发现什么异常。
这次在测试中,发现使用这个过程会出现“段错误”,造成程序退出了。
经过排查, 确定问题原因是C函数的返回值问题,ctypes默认的函数返回类型是int类型。
需要在使用中设置返回类型,例如:
func.restype = c_char_p
下面我们就来详细探讨下ctypes的使用小技巧
ctypes 库可以让开发者借助C语言进行开发。这个引入C语言的接口可以帮助我们做很多事情,比如需要调用C代码的来提高性能的一些小型问题。通过它你可以接入Windows系统上的 kernel32.dll 和 msvcrt.dll 动态链接库,以及Linux系统上的 libc.so.6 库。当然你也可以使用自己的编译好的共享库
我们先来看一个简单的例子 我们使用 Python 求 1000000 以内素数,重复这个过程10次,并计算运行时间。
import math
from timeit import timeit
def check_prime(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime(n):
return [x for x in xrange(2, n) if check_prime(x)]
print timeit(stmt='get_prime(1000000)', setup='from __main__ import get_prime',
number=10)
Output
42.8259568214
下面用C语言写一个的 check_prime 函数,然后把它当作共享库(动态链接库)导入

使用以下命令生成 .so (shared object)文件
gcc -shared -o prime.so -fPIC prime.c
import ctypes
import math
from timeit import timeit
check_prime_in_c = ctypes.CDLL('./prime.so').check_prime
def check_prime_in_py(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime_in_c(n):
return [x for x in xrange(2, n) if check_prime_in_c(x)]
def get_prime_in_py(n):
return [x for x in xrange(2, n) if check_prime_in_py(x)]
py_time = timeit(stmt='get_prime_in_py(1000000)', setup='from __main__ import get_prime_in_py',
number=10)
c_time = timeit(stmt='get_prime_in_c(1000000)', setup='from __main__ import get_prime_in_c',
number=10)
print "Python version: {} seconds".format(py_time)
print "C version: {} seconds".format(c_time)
Output
Python version: 43.4539749622 seconds
C version: 8.56250786781 seconds
我们可以看到很明显的性能差距 这里 有更多的方法去判断一个数是否是素数
再来看一个复杂点的例子 快速排序
mylib.c
#include <stdio.h>
typedef struct _Range {
int start, end;
} Range;
Range new_Range(int s, int e) {
Range r;
r.start = s;
r.end = e;
return r;
}
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort(int arr[], const int len) {
if (len <= 0)
return;
Range r[len];
int p = 0;
r[p++] = new_Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
int mid = arr[range.end];
int left = range.start, right = range.end - 1;
while (left < right) {
while (arr[left] < mid && left < right)
left++;
while (arr[right] >= mid && left < right)
right--;
swap(&arr[left], &arr[right]);
}
if (arr[left] >= arr[range.end])
swap(&arr[left], &arr[range.end]);
else
left++;
r[p++] = new_Range(range.start, left - 1);
r[p++] = new_Range(left + 1, range.end);
}
}
gcc -shared -o mylib.so -fPIC mylib.c
使用ctypes有一个麻烦点的地方是原生的C代码使用的类型可能跟Python不能明确的对应上来。比如这里什么是Python中的数组?列表?还是 array 模块中的一个数组。所以我们需要进行转换
test.py
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
r = [random.randrange(1, 100000000) for x in xrange(100000)]
arr = (ctypes.c_int * len(r))(*r)
nums.append((arr, len(r)))
init = time.clock()
for i in range(100):
quick_sort(nums[i][0], nums[i][1])
print "%s" % (time.clock() - init)
Output
1.874907
与Python list 的 sort 方法进行对比
?
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
nums.append([random.randrange(1, 100000000) for x in xrange(100000)])
init = time.clock()
for i in range(100):
nums[i].sort()
print "%s" % (time.clock() - init)
Output
2.501257
至于结构体,需要定义一个类,包含相应的字段和类型
class Point(ctypes.Structure):
_fields_ = [('x', ctypes.c_double),
('y', ctypes.c_double)]
除了导入我们自己写的C语言扩展文件,我们还可以直接导入系统提供的库文件,比如linux下c标准库的实现 glibc
import time
import random
from ctypes import cdll
libc = cdll.LoadLibrary('libc.so.6') # Linux系统
# libc = cdll.msvcrt # Windows系统
init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Python version: %s seconds" % (time.clock() - init)
init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)
Output
Python version: 0.850172 seconds
C version : 0.27645 seconds
以上都是ctypes的基本技巧,对普通的开发人员来说,基本够用了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13