京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网数据分析师七周养成记
我会按照提纲针对性的增加互联网侧的内容,比如网站分析,用户行为序列等。我也不想流于表面,而是系统性讲述。比如什么是产品埋点?在获得埋点数据后,怎么利用Python / Pandas的shift ( )函数将其清洗为用户行为session,进而计算出用户在各页面的停留时间,后续如何转换成统计宽表,如何以此建立用户标签等。
下面是各周的学习概述。
第一周:Excel学习掌握
如果Excel玩的顺溜,你可以略过这一周。不过介于我入行时也不会vlookup,所以有必要讲下。
重点是了解各种函数,包括但不限于sum,count,sumif,countif,find,if,left/right,时间转换等。
Excel函数不需要学全,重要的是学会搜索。即如何将遇到的问题在搜索引擎上描述清楚。
我认为掌握vlookup和数据透视表足够,是最具性价比的两个技巧。
学会vlookup,SQL中的join,Python中的merge很容易理解。
学会数据透视表,SQL中的group,Python中的pivot_table也是同理。
这两个搞定,基本10万条以内的数据统计没啥难度,80%的办公室白领都能秒杀。
Excel是熟能生巧,多找练习题。还有需要养成好习惯,不要合并单元格,不要过于花哨。表格按照原始数据(sheet1)、加工数据(sheet2),图表(sheet3)的类型管理。
下面是为了以后更好的基础而附加的学习任务:
了解单元格格式,后期的数据类型包括各类timestamp,date,string,int,bigint,char,factor,float等。
了解数组,以及怎么用(excel的数组挺难用),Python和R也会涉及到 list。
了解函数和参数,当进阶为编程型的数据分析师时,会让你更快的掌握。
了解中文编码,UTF8和ASCII,包括CSV的delimiter等,以后你会回来感谢我的。
这一周的内容我会拆分成两部分:函数篇和技巧篇。
这是一道练习题,我给你1000个身份证号码,告诉我里面有多少男女,各省市人口的分布,这些人的年龄和星座。如果能完成上述过程,那么这一周就直接略过吧。(身份证号码规律可以网上搜索)
第二周:数据可视化
数据分析界有一句经典名言,字不如表,表不如图。数据可视化是数据分析的主要方向之一。除掉数据挖掘这类高级分析,不少数据分析就是监控数据观察数据。
数据分析的最终都是要兜售自己的观点和结论的。兜售的最好方式就是做出观点清晰数据详实的PPT给老板看。如果没人认同分析结果,那么分析也不会被改进和优化,不落地的数据分析价值又在哪里?
首先要了解常用的图表:
Excel的图表可以100%完成上面的图形要求,但这只是基础。后续的进阶可视化,势必要用到编程绘制。为什么?比如常见的多元分析,你能用Excel很轻松的完成?但是在IPython只需要一行代码。
其次掌握BI,下图是微软的BI。
BI(商业智能)和图表的区别在于BI擅长交互和报表,更擅长解释已经发生和正在发生的数据。将要发生的数据是数据挖掘的方向。
BI的好处在于很大程度解放数据分析师的工作,推动全部门的数据意识,另外降低其他部门的数据需求(万恶的导数据)。
BI市面上的产品很多,基本都是建立仪表盘Dashboard,通过维度的联动和钻取,获得可视化的分析。
最后需要学习可视化和信息图的制作。
这是安(装)身(逼)立(加)命(薪)之本。这和数据本事没有多大关系,更看重审美、解读、PPT、信息化的能力。但值得花一点时间去学习。
数据可视化的学习就是三个过程:
了解数据(图表)
整合数据(BI)
展示数据(信息化)
第三周:分析思维的训练
这周轻松一下,学学理论知识。
好的数据分析首先要有结构化的思维,也就是我们俗称的金字塔思维。思维导图是必备的工具。
之后再了解SMART、5W2H、SWOT、4P理论、六顶思考帽等框架。这些框架都是大巧不工的经典。
分析也是有框架和方法论的,主要围绕三个要点展开:
一个业务没有指标,则不能增长和分析;
好的指标应该是比率或比例;
好的分析应该对比或关联。
举一个例子:我告诉你一家超市今天有1000人的客流量,你会怎么分析?
这1000人的数量,和附近其他超市比是多是少?(对比)
这1000人的数量比昨天多还是少?(对比)
1000人有多少产生了实际购买?(转化比例)
路过超市,超市外的人流是多少?(转化比例)
这是一个快速搭建分析框架的方法。如果只看1000人,是看不出分析不出任何结果。
优秀的数据分析师会拷问别人的数据,而他本身的分析也是经得起拷问,这就是分析思维能力。需要确切明白的是,一周时间锻炼不出数据思维,只能做到了解。数据思维是不断练习的结果,我只是尽量缩短这个过程。
第四周:数据库学习
Excel对十万条以内的数据处理起来没有问题,但是互联网行业就是不缺数据。但凡产品有一点规模,数据都是百万起。这时候就需要学习数据库。
越来越多的产品和运营岗位,会在招聘条件中,将会SQL作为优先的加分项。
SQL是数据分析的核心技能之一,从Excel到SQL绝对是数据处理效率的一大进步。
学习围绕Select展开。增删改、约束、索引、数据库范式均可以跳过。
主要了解where,group by,order by,having,like,count,sum,min,max,distinct,if,join,left join,limit,and和or的逻辑,时间转换函数等。
如果想要跟进一步,可以学习row_number,substr,convert,contact等。另外不同数据平台的函数会有差异,例如Presto和phpMyAdmin。
再有点追求,就去了解Explain优化,了解SQL的工作原理,了解数据类型,了解IO。以后就可以和技术研发们谈笑风生,毕竟将“这里有bug”的说话,换成“这块的数据死锁了”,逼格大大的不同。
SQL的学习主要是多练,网上寻找相关的练习题,刷一遍就差不多了。
第五周:统计知识学习
很遗憾,统计知识也是我薄弱的地方,可这是数据分析的基础。
我看过很多产品和运营相关的数据分析文章,没有多少提及统计知识。这是不严谨的。
比如产品的AB测试,如果产品经理并不清楚置信度的含义和概念,那么好的效果并不意味着真正的好。尤其是5%这种非显著的提高。
比如运营一次活动,运营若不了解检验相关的概念,那么如何去判别活动在数据上是有效果还是没有效果?别说平均数。
再讨论一下经典的概率问题,如果一个人获流感,实验结果为阳性的概率为90%;如果没有获流感,实验结果为阳性的概率为9%。现在这个人检验结果为阳性,他有多少几率是得了流感?
如果你觉得几率有50%、60%、70%等等,那么都犯了直觉性的错误。它还和得病的基础概率有关。
统计知识会教我们以另一个角度看待数据。如果大家了解过《统计数据会撒谎》,那么就知道很多数据分析的决策并不牢靠。
我们需要花一周的时间掌握描述性统计,包括均值、中位数、标准差、方差、概率、假设检验、显著性、总体和抽样等概念。
不需要学习更高阶的统计知识,谁让我们是速成呢。只要做到不会被数据欺骗,不犯错误就好。
以Excel的分析工具库举例(图片网上找来)。在初级的统计学习中,需要了解列1的各名词含义,而不是停留在平均数这个基础上。
第六周:业务知识(用户行为、产品、运营)
这一周需要了解业务。对于数据分析师来说,业务的了解比数据方法论更重要。当然很遗憾,业务学习没有捷径。
我举一个数据沙龙上的例子,一家O2O配送公司发现在重庆地区,外卖员的送货效率低于其他城市,导致用户的好评率降低。总部的数据分析师建立了各个指标去分析原因,都没有找出来问题。后来在访谈中发觉,因为重庆是山城,路面高低落差比较夸张,很多外卖人员的小电瓶上不了坡…所以导致送货效率慢。
这个案例中,我们只知道送货员的送货水平距离,即POI数据,根本不可能知道垂直距离的数据。这就是数据的局限,也是只会看数据的分析师和接地气分析师的最大差异。
对业务市场的了解是数据分析在工作经验上最大的优势之一。不同行业领域的业务知识都不一样,我就不献丑了。在互联网行业,有几个宽泛的业务数据需要了解。
产品数据分析,以经典的AAARR框架学习,了解活跃留存的指标和概念(这些内容,我的历史文章已经涉及了部分)。
并且数据分析师需要知道如何用SQL计算。因为在实际的分析过程中,留存只是一个指标,通过userId 关联和拆分才是常见的分析策略。
网站数据分析,可以抽象吃一个哲学问题:
用户从哪里来(SEO/SEM),用户到哪里去(访问路径),用户是谁(用户画像/用户行为路径)。
虽然网站已经不是互联网的主流,但现在有很多APP+Web的复合框架,朋友圈的传播活动肯定需要用到网页的指标去分析。
用户数据分析,这是数据化运营的一种应用。
在产品早期,可以通过埋点计算转化率,利用AB测试达到快速迭代的目的,在积累到用户量的后期,利用埋点去分析用户行为,并且以此建立用户分层用户画像等。
例如用贝叶斯算法计算用户的性别概率,用K聚类算法划分用户的群体,用行为数据作为特征建立响应模型等。不过快速入门不需要掌握这些,只需要有一个大概的框架概念。
除了业务知识,业务层面的沟通也很重要。在业务线足够长的时候,我不止一次遇到产品和运营没有掌握所有的业务要点,尤其涉及跨部门的分析。良好的业务沟通能力是数据分析的基础能力。
第七周:Python/R 学习
终于到第七周,也是最痛苦的一周。这时应该学习编程技巧。
是否具备编程能力,是初级数据分析和高级数据分析的风水岭。数据挖掘,爬虫,可视化报表都需要用到编程能力(例如上文的多元散点图)。掌握一门优秀的编程语言,可以让数据分析师事半功倍,升职加薪,迎娶白富美。
以时下最热门的R语言和Python为学习支线,速成只要学习一条。
我刚好两类都学过。R的优点是统计学家编写的,缺点也是统计学家编写。如果是各类统计函数的调用,绘图,分析的前验性论证,R无疑有优势。但是大数据量的处理力有不逮,学习曲线比较陡峭。Python则是万能的胶水语言,适用性强,可以将各类分析的过程脚本化。Pandas,SKLearn等各包也已经追平R。
学习R,需要了解数据结构(matrix,array,data.frame,list等)、数据读取,图形绘制( ggplot2)、数据操作、统计函数(mean,median,sd,var,scale等)。高阶的统计暂时不用去涉及,这是后续的学习任务。
R语言的开发环境建议用RStudio。
学习Python有很多分支,我们专注数据分析这块。需要了解调用包、函数、数据类型(list,tuple,dict),条件判断,迭代等。高阶的Numpy和Pandas在有精力的情况下涉及。
Python的开发环境建议Anaconda,可以规避掉环境变量、包安装等大部分新手问题。Mac自带Python2.7,但现在Python 3已经比几年前成熟,没有编码问题,就不要抱成守旧了。
对于没有技术基础的运营和产品,第七周最吃力,虽然SQL+Excel足够应付入门级数据分析,但是涉及到循环迭代、多元图表的分析部分,复杂度就呈几何上升。更遑论数据挖掘这种高阶玩法。
我也相信,未来了解数据挖掘的产品和运营会有极强的竞争力。
到这里,刚刚好是七周。如果还需要第八周+,则是把上面的巩固和融会贯通,毕竟这只是目的性极强的速成,是开始,而不是数据分析的毕业典礼。
如果希望数据分析能力更近一步,或者成为优秀的数据分析师,每一周的内容都能继续学习至精通。实际上,业务知识、统计知识仅靠两周是非常不牢固的。
再往后的学习,会有许多分支。比如偏策划的数据产品经理,比如偏统计的机器学习,比如偏商业的市场分析师,比如偏工程的大数据工程师。这是后话了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27