
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办的 2014中国大数据技术大会 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
携程资深软件工程师廖晓格将在“大数据技术”分论坛带来“让大数据更实时和可视化”的演讲。大数据不仅是数据规模大,而且最好能实时查看和分析。 实时和可视化拉近了大数据与普通用户的距离,更加贴近业务需要。携程在大数据实时和可视化方面做了不少努力,实现了以下目标,廖晓格将在演讲中分享携程在其中的经验和技术:
廖晓格,携程资深软件工程师
有6年Hadoop相关应用开发经验,先后在PPTV,eBay,携程参与开发过相应大数据平台相关应用,目前在携程Data Infrastructure team负责大数据平台的运维和开发工作。
CSDN:你所在的公司,都曾使用过哪些大数据技术?你对这些技术满意的地方和不满意的地方分别有什么?
廖晓格:我们公司比较重视大数据技术,我们主要使用的技术是Hadoop生态环境的各种开源框架,storm,spark等。满意的地方是他们都是开源的,所以遇到问题的时候总会找到解决方案,而且社区也很活跃, 能够获得很多帮助。同时也会遇到很多bug,需要对使用的框架很了解,才能很好的使用它,幸亏我们有很强大的运维和开发团队支持,不断优化,不断解决问题。
CSDN:根据你的了解,目前类似的企业中,在数据方面,遇到的最大困难是什么?
廖晓格:据我了解,每个公司都有很多数据,每天T级或P级的数据,但是大部分都是搞技术的不懂业务,搞业务的不懂技术,这样就不会很快很有效率的利用数据来帮助业务,所以让大数据可视化很重要,业务人员可以很方便的获取他们想要的数据,可以省去很多沟通的成本。
CSDN:在大数据领域,目前还有哪些技术是你正在观察和研究的,为什么你看好这些技术?
廖晓格:Storm,Streaming流式计算和Spark是我现在正在观察和研究的,互联网的竞争压力很大,所以很多东西要快,谁比较快就占领了优势,大数据也一样,数据早点出来,业务就可以早点做决策。我们也是不断改进,不断往这个目标前进。
CSDN:请谈谈你在这次大会上即将分享的话题。
廖晓格:我分享的是Make big data visualizable and real-time,让大数据更加实时和可视化,携程每天上T的数据都是实时从网站,手机等各种应用端流到服务端,如果没有可视化,根本不知道用户发生什么行为,哪个产品用户更加喜欢。如果计算很慢,我们将会不能给用户很好的反馈,不能及时发现和解决各种应用端遇到的各种问题,这样就不能给用户很好的体验,将会流失大量的用户。我们目标在第一时间为用户提供最优的服务。本文来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10