京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办的 2014中国大数据技术大会 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
携程资深软件工程师廖晓格将在“大数据技术”分论坛带来“让大数据更实时和可视化”的演讲。大数据不仅是数据规模大,而且最好能实时查看和分析。 实时和可视化拉近了大数据与普通用户的距离,更加贴近业务需要。携程在大数据实时和可视化方面做了不少努力,实现了以下目标,廖晓格将在演讲中分享携程在其中的经验和技术:
廖晓格,携程资深软件工程师
有6年Hadoop相关应用开发经验,先后在PPTV,eBay,携程参与开发过相应大数据平台相关应用,目前在携程Data Infrastructure team负责大数据平台的运维和开发工作。
CSDN:你所在的公司,都曾使用过哪些大数据技术?你对这些技术满意的地方和不满意的地方分别有什么?
廖晓格:我们公司比较重视大数据技术,我们主要使用的技术是Hadoop生态环境的各种开源框架,storm,spark等。满意的地方是他们都是开源的,所以遇到问题的时候总会找到解决方案,而且社区也很活跃, 能够获得很多帮助。同时也会遇到很多bug,需要对使用的框架很了解,才能很好的使用它,幸亏我们有很强大的运维和开发团队支持,不断优化,不断解决问题。
CSDN:根据你的了解,目前类似的企业中,在数据方面,遇到的最大困难是什么?
廖晓格:据我了解,每个公司都有很多数据,每天T级或P级的数据,但是大部分都是搞技术的不懂业务,搞业务的不懂技术,这样就不会很快很有效率的利用数据来帮助业务,所以让大数据可视化很重要,业务人员可以很方便的获取他们想要的数据,可以省去很多沟通的成本。
CSDN:在大数据领域,目前还有哪些技术是你正在观察和研究的,为什么你看好这些技术?
廖晓格:Storm,Streaming流式计算和Spark是我现在正在观察和研究的,互联网的竞争压力很大,所以很多东西要快,谁比较快就占领了优势,大数据也一样,数据早点出来,业务就可以早点做决策。我们也是不断改进,不断往这个目标前进。
CSDN:请谈谈你在这次大会上即将分享的话题。
廖晓格:我分享的是Make big data visualizable and real-time,让大数据更加实时和可视化,携程每天上T的数据都是实时从网站,手机等各种应用端流到服务端,如果没有可视化,根本不知道用户发生什么行为,哪个产品用户更加喜欢。如果计算很慢,我们将会不能给用户很好的反馈,不能及时发现和解决各种应用端遇到的各种问题,这样就不能给用户很好的体验,将会流失大量的用户。我们目标在第一时间为用户提供最优的服务。本文来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27