
Python实现的几个常用排序算法实例
前段时间为准备百度面试恶补的东西,虽然最后还是被刷了,还是把那几天的“战利品”放点上来,算法一直是自己比较薄弱的地方,以后还要更加努力啊。
下面用Python实现了几个常用的排序,如快速排序,选择排序,以及二路并归排序等等。
def directInsertSort(seq):
""" 直接插入排序 """
size = len(seq)
for i in range(1,size):
tmp, j = seq[i], i
while j > 0 and tmp < seq[j-1]:
seq[j], j = seq[j-1], j-1
seq[j] = tmp
return seq
def directSelectSort(seq):
""" 直接选择排序 """
size = len(seq)
for i in range(0,size - 1):
k = i;j = i+1
while j < size:
if seq[j] < seq[k]:
k = j
j += 1
seq[i],seq[k] = seq[k],seq[i]
return seq
def bubbleSort(seq):
"""冒泡排序"""
size = len(seq)
for i in range(1,size):
for j in range(0,size-i):
if seq[j+1] < seq[j]:
seq[j+1],seq[j] = seq[j],seq[j+1]
return seq
def _divide(seq, low, high):
"""快速排序划分函数"""
tmp = seq[low]
while low != high:
while low < high and seq[high] >= tmp: high -= 1
if low < high:
seq[low] = seq[high]
low += 1
while low < high and seq[low] <= tmp: low += 1
if low < high:
seq[high] = seq[low]
high -= 1
seq[low] = tmp
return low
def _quickSort(seq, low, high):
"""快速排序辅助函数"""
if low >= high: return
mid = _divide(seq, low, high)
_quickSort(seq, low, mid - 1)
_quickSort(seq, mid + 1, high)
def quickSort(seq):
"""快速排序包裹函数"""
size = len(seq)
_quickSort(seq, 0, size - 1)
return seq
def merge(seq, left, mid, right):
tmp = []
i, j = left, mid
while i < mid and j <= right:
if seq[i] < seq[j]:
tmp.append(seq[i])
i += 1
else:
tmp.append(seq[j])
j += 1
if i < mid: tmp.extend(seq[i:])
if j <= right: tmp.extend(seq[j:])
seq[left:right+1] = tmp[0:right-left+1]
def _mergeSort(seq, left, right):
if left == right:
return
else:
mid = (left + right) / 2
_mergeSort(seq, left, mid)
_mergeSort(seq, mid + 1, right)
merge(seq, left, mid+1, right)
#二路并归排序
def mergeSort(seq):
size = len(seq)
_mergeSort(seq, 0, size - 1)
return seq
if __name__ == '__main__':
s = [random.randint(0,100) for i in range(0,20)]
print s
print "\n"
print directSelectSort(copy(s))
print directInsertSort(copy(s))
print bubbleSort(copy(s))
print quickSort(copy(s))
print mergeSort(copy(s))
运行结果如下:
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
[8, 10, 26, 28, 29, 32, 45, 47, 47, 51, 56, 61, 64, 69, 76, 81, 84, 88, 91, 95]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27