
简要讲解Python编程中线程的创建与锁的使用
这篇文章主要介绍了简要讲解Python编程中线程的创建与锁的使用,Python中虽然有GIL的存在,但依然是能够创建多个线程来交替使用的,
创建线程
创建线程的两种方法:
1,直接调用threading.Thread来构造thread对象,Thread的参数如下:
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})
group为None;
target为线程将要执行的功能函数;
name为线程的名字,也可以在对象构造后调用setName()来设定;
args为tuple类型的参数,可以为多个,如果只有一个也的使用tuple的形式传入,例如(1,);
kwargs为dict类型的参数,也即位命名参数
threading.Thread对象的其他方法:
start(),用来启动线程;
join(), 等待直到线程结束;
isAlive(),获取线程状态
setDeamon(), 设置线程为deamon线程,必须在start()调用前调用,默认为非demon。
注意: python的主线程在没有非deamon线程存在时就会退出。
threading.currentthread() , 用来获得当前的线程;
threading.enumerate() , 用来多的当前存活的所有线程;
运行结果
I am Thread-1.num:0
I am Thread-1.num:1
I am Thread-1.num:2
I am Thread-2.num:0
I am Thread-2.num:1
I am Thread-2.num:2
I am Thread-3.num:0
I am Thread-3.num:1
I am Thread-3.num:2
2,直接从threading.Thread继承,然后重写__init__方法和run方法
#coding:utf-8
import threading
class MyThread(threading.Thread): #继承父类threading.Thread
def __init__(self, num ):
threading.Thread.__init__(self)
self.num = num
#把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
def run(self):
for i in range(self.num):
print 'I am %s.num:%s' % (self.getName(), i)
for i in range(3):
t = MyThread(3)
t.start()
t.join()
运行结果
I am Thread-1.num:0
I am Thread-1.num:1
I am Thread-1.num:2
I am Thread-2.num:0
I am Thread-2.num:1
I am Thread-2.num:2
I am Thread-3.num:0
I am Thread-3.num:1
I am Thread-3.num:2
锁的使用
假设我们有一个公共数据x(也可以叫共享资源,临界资源),然后跑10个线程都去访问这变量并对这个变量进行修改的操作,那么就得到意料之外的结果。
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
# 调用父类的初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
for i in range(3):
x = x + 1
time.sleep(2) # 调用sleep函数,让线程休眠5秒
print x
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
运行结果
[root@localhost ~]# python syn.py
30
30
30
30
30
30
30
30
30
30
由于x是全局变量(共享资源),每个线程对x操作后就休眠了
在线程休眠的时候其他线程也都开始执行操作,
最终休眠5秒后x的值最终就被修改为30了
使用互斥锁来保护公共资源。用互斥锁来保证同一时刻只有一个线程访问公共资源,实现简单的同步
互斥锁:threading.Lock
互斥锁方法:acquire() 获取锁 release():释放锁
当有一个线程获的锁之后,这把锁就会进入locke状态(被锁起来了),另外的线程试图获取锁的时候就会变成同步阻塞状态,
当拥有线程锁的的线程调用锁方法 release()之后就会释放锁,那么锁就会变成开锁unlocked状态,之后再从同步阻塞状态的线程中选择一个来获得锁
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
lock.acquire() # 调用lock的acquire方法
for i in range(3):
x = x + 1
time.sleep(2) # 调用sleep函数,让线程休眠5秒
print x
lock.release() # 调用lock的release方法
lock = threading.Lock() # 类实例化
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
运行结果:
[root@localhost ~]# python syn.py
3
6
9
12
15
18
21
24
27
30
可重入锁:threading.RLock()
方法和互斥锁一样。
假设一个锁嵌套的情况:有个线程以及获取到锁和共享资源了,但是又需要一把锁来获取另外一个资源,那么只要把代码里面的:
lock = threading.Lock()
修改为:
lock = threading.RLock()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29