京公网安备 11010802034615号
经营许可证编号:京B2-20210330
张涵诚:贵阳模式值得参考,政府发展大数据需要方法论
导语:大数据是提升政府管理能力的有效技术路径,驱动智慧政府转型的关键力量,这已是各地政府的广泛共识,但能真正将大数据应用落地到政府日常工作管理中的目前为数不多。对于大部分地方政府而言,大数据对于政府管理工作的变革还处在有了“世界观”缺少“方法论”的阶段。如何找到“方法论”,促进政府大数据应用落地,利用大数据提升政府工作创造力,是本文想要与各位探讨的话题。
(数据生态)
最近半年笔者为政府做了很多大数据培训和咨询的工作,政府需要构建数据生态,驱动经济增长,但如何参考贵阳模式,利用数据,为人民服务?笔者梳理如下几个“关系”供参考:
一、要明确大数据与政府管理的关系
大数据因为巨大的商业价值而备受企业关注,但其实政府作为掌握更多信息的管理者,很多时候都是数据的首要获得者,因此政府更有能力也有优势率先合理利用大数据来开展工作。而随着大数据价值的逐步释放,大数据对于政府管理的巨大作用和意义也日益显现。
1、大数据推动透明政府建设
随着信息浪潮的到来,信息革命会产生一种新型的信任政治,信息公开对政府良好运行具有重大意义。信息不对称会使权利失去监督,滋生不良作风,甚至腐败行为。政府数据公开是权利运行公开透明的基础。
2、大数据促进政府治理变革
大数据的发展促进政府治理从经验决策到数据决策的变革。传统政府决策往往主要依靠政治精英和业务专家的知识和经验做出判断,随着大数据技术的发展,让决策者们可以依据科学客观的数据进行决策、分析和预测,通过“数据化决策”实现政府智慧转型。
3、大数据驱动政府服务转型
对公众而言,大数据带来的最直观变化,就是政府从管理型向服务型、精准服务型转变。以往政府工作人员只是被动等待百姓上门办理业务,现在有了大数据的海量信息支撑后,就可以精准定位各类人群,提高政府部门行政效率,增强服务能力。
4、政府管理具有大数据思维更能促进经济发展
大数据最重要的价值之一在于通过对数据的分析发现事物的变化规律,从而对未来进行科学预测。大数据有助于政府对国民经济发展进行合理规划,规避风险,提高经济发展与政府管理的协调性,进而挖掘出我国经济发展更多潜力。
(贵阳模式)
从目前来看,政府的数据包括水电煤气、医疗、教育、工商法务、交通基建等,这些数据用以:
激励城市产业创新;促进产业结构升级;提升城市形象、城市吸引力、政府品质;促进城市经济增长。在这方面贵阳无疑是一个典范,贵阳模式值得参考。2016年,全市大数据产业规模总量达1300亿元,同比增长41.9%;主营业务收入达650亿元,占全省比重超过50%;大数据及关联企业超过4000家。
二、发展大数据项目,有助于推动政府工作创新
政府发展大数据也需要建设一个生态系统,不仅可以让大数据从质和量上得到发展,同时可获取更全面的业务创新,可以让数据生生不息,最终发展成为一个良性的循环。如何构建政府的大数据生态系统,单纯依靠传统的政府管理思路和力量是不够的。
1、发展大数据项目有助于提升政府大数据技术应用水平
大数据是信息技术的新热点,政府部门作为国家行政管理职能部门也应积极参与到大数据技术的应用实践中来。如何提高政府大数据技术的应用水平?除了对政府工作人员进行大数据系统培训,发展大数据项目也是政府提升大数据技术应用能力的有效途径之一。政府部门就职人员也应积极利用各种大数据项目实践机会,提高个人大数据技术能力,促进政府大数据技术应用水平的提升。
2、发展大数据项目有助于促进政府大数据应用落地
前面我们说到政府发展大数据也需要建设一个生态系统,而政务大数据产业链按上、中、下游可以分为数据采集与制造、数据加工和使用以及大数据服务提供三个板块,而每一个环节都需要落实到具体的业务应用场景中去。如何将政府数据与具体的政府大数据应用场景相结合,则需要通过开展具体的大数据项目才能实现。
3、发展大数据项目能推动政府管理工作创新
政府管理工作要实现科学创新离不开智能化。智能化意味着精准分析、精准治理、精准服务、精准反馈。如何做到政府管理智能化,需要政府通过获取、存储、管理、分析等手段,将海量大数据变成活数据,广泛应用于社会治理领域。
4、传统产业和新兴战略产业对于大数据的思考在哪里?
这些产业是否有大数据平台、产品、和第三方服务公司做数据服务。如果没有是不是要引进,培育扶持
三、如何把握好机遇做好大数据创新项目
1、充分利用大数据政策红利
随着国家层面对发展大数据的重视,大数据已正式上升为我国国家战略,各地政府也相应出台不少发展大数据项目相关扶植政策。各地政府都应把握好大数据政策红利,抓紧机遇发展大数据创新项目。
2、借鉴西方欧美国家先进经验
欧美等西方国家作为全球大数据领域的先行者,在发展大数据创新项目,运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。以之为标杆,分析其典型做法,并与国内大数据发展状况相结合,摸索出一条适合我们自己的大数据发展之路。
3、政企合作,优势互补,合作共赢
政府拥有大量的政务及城市信息数据与巨大的应用需求,而企业则掌握着与居民生活消费相关的数据与大数据采集、处理、分析的关键技术。政企合作共建大数据项目,可以形成优势互补,将双方的资源盘活,各取所需,实现政府与企业的互利共赢。
贵阳模式促进了全国大数据的发展,那么人工智能呢,区块链呢,脑科学呢,量子计算呢,传感器物联网呢?其实都可以是有相同的“套路”的,但关键的问题是,新产业的眼球经济、优秀企业的落地、博得大家偏好,更重要的在于关键还是一把手重视、战略的布置,战术的执行。否则也就只能YY下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07