
python实现将html表格转换成CSV文件的方法
本文实例讲述了python实现将html表格转换成CSV文件的方法。分享给大家供大家参考。具体如下:
使用方法:python html2csv.py *.html
这段代码使用了 HTMLParser 模块
#!/usr/bin/python
# -*- coding: iso-8859-1 -*-
# Hello, this program is written in Python - http://python.org
programname = 'html2csv - version 2002-09-20 - http://sebsauvage.net'
import sys, getopt, os.path, glob, HTMLParser, re
try: import psyco ; psyco.jit() # If present, use psyco to accelerate the program
except: pass
def usage(progname):
''' Display program usage. '''
progname = os.path.split(progname)[1]
if os.path.splitext(progname)[1] in ['.py','.pyc']: progname = 'python '+progname
return '''%s
A coarse HTML tables to CSV (Comma-Separated Values) converter.
Syntax : %s source.html
Arguments : source.html is the HTML file you want to convert to CSV.
By default, the file will be converted to csv with the same
name and the csv extension (source.html -> source.csv)
You can use * and ?.
Examples : %s mypage.html
: %s *.html
This program is public domain.
Author : Sebastien SAUVAGE <sebsauvage at sebsauvage dot net>
http://sebsauvage.net
''' % (programname, progname, progname, progname)
class html2csv(HTMLParser.HTMLParser):
''' A basic parser which converts HTML tables into CSV.
Feed HTML with feed(). Get CSV with getCSV(). (See example below.)
All tables in HTML will be converted to CSV (in the order they occur
in the HTML file).
You can process very large HTML files by feeding this class with chunks
of html while getting chunks of CSV by calling getCSV().
Should handle badly formated html (missing <tr>, </tr>, </td>,
extraneous </td>, </tr>...).
This parser uses HTMLParser from the HTMLParser module,
not HTMLParser from the htmllib module.
Example: parser = html2csv()
parser.feed( open('mypage.html','rb').read() )
open('mytables.csv','w+b').write( parser.getCSV() )
This class is public domain.
Author: Sébastien SAUVAGE <sebsauvage at sebsauvage dot net>
http://sebsauvage.net
Versions:
2002-09-19 : - First version
2002-09-20 : - now uses HTMLParser.HTMLParser instead of htmllib.HTMLParser.
- now parses command-line.
To do:
- handle <PRE> tags
- convert html entities (&name; and &#ref;) to Ascii.
'''
def __init__(self):
HTMLParser.HTMLParser.__init__(self)
self.CSV = '' # The CSV data
self.CSVrow = '' # The current CSV row beeing constructed from HTML
self.inTD = 0 # Used to track if we are inside or outside a <TD>...</TD> tag.
self.inTR = 0 # Used to track if we are inside or outside a <TR>...</TR> tag.
self.re_multiplespaces = re.compile('\s+') # regular expression used to remove spaces in excess
self.rowCount = 0 # CSV output line counter.
def handle_starttag(self, tag, attrs):
if tag == 'tr': self.start_tr()
elif tag == 'td': self.start_td()
def handle_endtag(self, tag):
if tag == 'tr': self.end_tr()
elif tag == 'td': self.end_td()
def start_tr(self):
if self.inTR: self.end_tr() # <TR> implies </TR>
self.inTR = 1
def end_tr(self):
if self.inTD: self.end_td() # </TR> implies </TD>
self.inTR = 0
if len(self.CSVrow) > 0:
self.CSV += self.CSVrow[:-1]
self.CSVrow = ''
self.CSV += '\n'
self.rowCount += 1
def start_td(self):
if not self.inTR: self.start_tr() # <TD> implies <TR>
self.CSVrow += '"'
self.inTD = 1
def end_td(self):
if self.inTD:
self.CSVrow += '",'
self.inTD = 0
def handle_data(self, data):
if self.inTD:
self.CSVrow += self.re_multiplespaces.sub(' ',data.replace('\t',' ').replace('\n','').replace('\r','').replace('"','""'))
def getCSV(self,purge=False):
''' Get output CSV.
If purge is true, getCSV() will return all remaining data,
even if <td> or <tr> are not properly closed.
(You would typically call getCSV with purge=True when you do not have
any more HTML to feed and you suspect dirty HTML (unclosed tags). '''
if purge and self.inTR: self.end_tr() # This will also end_td and append last CSV row to output CSV.
dataout = self.CSV[:]
self.CSV = ''
return dataout
if __name__ == "__main__":
try: # Put getopt in place for future usage.
opts, args = getopt.getopt(sys.argv[1:],None)
except getopt.GetoptError:
print usage(sys.argv[0]) # print help information and exit:
sys.exit(2)
if len(args) == 0:
print usage(sys.argv[0]) # print help information and exit:
sys.exit(2)
print programname
html_files = glob.glob(args[0])
for htmlfilename in html_files:
outputfilename = os.path.splitext(htmlfilename)[0]+'.csv'
parser = html2csv()
print 'Reading %s, writing %s...' % (htmlfilename, outputfilename)
try:
htmlfile = open(htmlfilename, 'rb')
csvfile = open( outputfilename, 'w+b')
data = htmlfile.read(8192)
while data:
parser.feed( data )
csvfile.write( parser.getCSV() )
sys.stdout.write('%d CSV rows written.\r' % parser.rowCount)
data = htmlfile.read(8192)
csvfile.write( parser.getCSV(True) )
csvfile.close()
htmlfile.close()
except:
print 'Error converting %s ' % htmlfilename
try: htmlfile.close()
except: pass
try: csvfile.close()
except: pass
print 'All done. '
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29