
“为什么人工智能+用户体验”会有更好的可发现性
利用人工智能进行信息架构,不仅提高了内容的可发现性和利用率,更为企业节约信息获取成本。而人工智能的另一个应用场景是提高内容的可发现性(findability),具体而言就是打造更强大的搜索引擎。本文作者spydergrrl介绍了如何更有效地利用人工智能生成更好的搜索结果。
我完全沉迷于使用人工智能、搜索模式和信息架构来提高内容的可发现性的想法。我们正在使用聊天机器人和数据挖掘做着惊人的事情,它们可以增强手动信息架构工作,全面提高用户体验。
为什么人工智能+用户体验=更好的可发现性
假设你有一个包含搜索组件的服务。现在,你的用户可能正在进行搜索,并使用手动过滤器对搜索结果进行排序,就像他们一直以来所做的一样。
你怎么知道他们是否找到了他们需要的东西?你可以依靠分析来看他们是否正在访问你想让他们访问的内容,并进行用户研究以得知他们是否认为自己能够成功地完成他们的任务。你可以通过分析惯用数据、服务时间并在回访和反馈表单中直接询问他们来衡量整体用户满意度。
假设有些用户在搜索时遇到问题,或者不能从搜索结果中找到所需的内容。也许他们的体验总体上是凑合的,但是通过搜索结果查看搜索字词和点击量你可以知道,他们可以得到更好的搜索结果或者与其任务相关的更清晰的路径。
你如何帮助他们更好地搜索呢?也许如果他们稍微使用更狭窄的角度或更综合的短语,他们可能就能够找到更多关于他们所查询问题的相关信息。但这些都是理论。
你将重新设计服务,包括搜索,使用以用户为中心的设计方法。效果不错!然后,让我们植入一点人工智能技术。
当你开始进行用户体验的设计过程时,你可以使用人工智能系统去分析大量看似无关的数据来帮助你的设计决策。例如,你可以设置你的数据挖掘工具去开始收集结构化和非结构化的数据(分析、搜索查询以及其他惯用数据)。当你确定要为用户解决哪些问题时,你可以连接一个人工智能系统(例如IBMWatson)来开始分析非结构化的数据。
人工智能训练
但是,怎么能让人工智能系统知道它该做什么呢?这是个有趣的部分:首先它解析数据的表面价值,然后你需要去训练它。人工智能系统可以花费比手动的方法少得多的时间分析大量的数据,并且可以实时学习。它们了解背景,所以你可以通过公司规定、元数据和问题的形式向它们提供更多额外的信息。
在你完成用户体验研究和设计阶段时,你将不断完善你提出的问题并将改变其数据方面的分析。你可以用简单易懂的话问它问题:有多少人搜索X?有多少次Y作为回答出现?我们有关于Z的哪些类型的信息?系统基于其对数据的分析,会尽可能好地回应这些问题。最美妙的部分就是你不会被你问问题的能力所限制。系统会带走你的问题,还有数据,进行实际学习。它开始问自己问题。随着时间的推移和搜索引擎中出现越来越多的问题,以及收集到更多的用户分析,它可以更好地建立连接、识别趋势、提出假设以及生成更丰富的结果。
这将如何帮到用户搜索呢?如果你的用户依靠搜索来查找信息,那么你可以用这个数据来提高搜索质量。想想:更好地预测搜索字词、更相关的搜索结果以及类似Amazon的跨主题推荐。这些都有潜力让用户体验变得更丰富,因为你的用户所需要的内容直接来自于一个已经从上一个查过它的人学习过的引擎。
信息架构的人工智能
它如何有助于设计出更好的信息架构?信息架构最困难的部分之一是使用对用户有用的标签来创建适当的内容分组。人工智能可以通过分析趋势的内容相关数据,帮助发现和提出内容之间的关系:从单词本身的意义到用户如何寻找或搜索再到他们是如何在网站或应用程序或服务之间进行移动的。人工智能能够突出我们人类所看不到的趋势,这可能成为新的信息面或内容的使用案例。
假如你将用户研究与你的人工智能系统的大规模数据分析相结合,会更好地识别内容类型之间的关系并改进内容分组和交叉连接吗?要以更有意义的方式为你的用户进行内容分组并添加标签,要在正确的时间提供正确的相关链接,并使你的网站、服务或产品更加直观。并且假如它可以分析内部和外部数据,会帮助你决定如何最好地为内容管理器构建内部信息结构(例如你的内容管理系统)和终端用户的导航结构吗(例如你的网站或应用程序的菜单)?
我们还需要人工的力量
当然,现在我还不提倡机器生成的信息架构,但我建议使用人工智能分析来自看似无关资源的用户数据可以生成我们所看不到的趋势和关系。并且它可以构建更适合用户的内容,并且提供有价值的信息。
如果用户体验中有什么东西是我们可以更多地使用的,我认为它不一定是数据;是智能。人工智能可以为我们带来目前不同来源的数据所缺少的智能。数据可视化可以帮助内部的人更好地理解人工智能输出的结果,从而帮助进行决策制定。所有的这些都是新的,并且这意味着数据科学家有机会成为用户体验设计过程中的关键支持者。
人工智能到信息架构到信息管理
除了支持信息架构设计,人工智能通过增加可发现性和推荐的潜力,为信息管理系统提供了一些真正有趣的机会。想想:因为人工智能系统可以推测文档之间的含义和关系,所以你从来不需要去再次标记你在企业文档管理系统上传的文件内容。
假如你的内部文档管理系统能够主动通知你有人上传了一个关于你感兴趣的主题的文档会如何呢?并且假如它能够确定文件与你的兴趣相关,即使没有出现任何特定的短语,但是人工智能系统能够分析文档中的非结构化的内容并将其映射到你所标注的相似的内容又会如何呢?在登录系统后就有推荐的相关的内容出现并帮助到你的工作将会多么美好呢?
我们从哪里开始?
对于我的情况而言,我正在把Watson植入我正在创建的系统的后端开始收集数据。我正在使用用户研究来告诉它我导入引擎的商业规则。我的目标是生成更好的搜索结果,并最终设立一个基于聊天机器人的推荐引擎来帮助用户找到他们需要什么以及他们应该从哪里获得这些信息,因为,让我们面对这个现实,没有人知道大型组织是如何工作的,并且也不知道在哪里能提出他们的请求。
并且如果我至少能够帮助用户知道在哪里能直接提出他们的请求,我就为他们节省了时间并且为我的公司节省了大量的资金。这是一个小的变化,但它可能产生非常大的影响。
但关键在于要开始:找到一些项目并添加一个人工智能组件,来看看它能够做什么。开始把规则和问题扔给它,来看看你(还有它!)可以学到什么。
尝试、运行、开辟、开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28