
SPSS统计基础---Probit 分析
Probit 分析
此过程度量刺激的强度与对刺激显示出特定响应的个案比例之间的关系。如果您具有二分输出,并认为该输出受某些自变量级别的影响或是由其导致的,并且尤其适合实验数据,则此分析非常有用。使用此过程可以估计引致特定比例的响应所需的刺激强度,例如中位效应剂量。
示例。新型杀虫剂对于杀灭蚂蚁的有效性如何,适用浓度多大?可以执行一项实验,对蚂蚁样本施用不同浓度的杀虫剂,然后记录杀灭的蚂蚁数量以及被施用杀虫剂的蚂蚁数量。通过对这些数据应用Probit 分析,可以确定浓度和杀灭效力之间的关系紧密度,并且可以确定在希望确保杀灭一定比例(例如95%)的蚂蚁时杀虫剂的适当浓度。
统计量。回归系数和标准误、截距和标准误、Pearson 拟合优度卡方、观察的和期望的频率以及自变量有效级别的置信区间。
假设。观察值应是独立的。如果自变量值的数量与观察值的数量相比过多(在某项观察研究中可能遇到这样的情况),则卡方统计量和拟合优度统计量可能无效。
相关过程。Probit 分析与Logistic 回归紧密相关;实际上,如果选择Logit 转换,则此过程最终计算的是Logistic 回归。总的来说,Probit 分析适用于设计的实验,而Logistic 回归更适用于观察研究。输出中的差异反映了这些不同的侧重方面。Probit分析过程报告不同响应频率下有效值的估计值(包括中位效应剂量),而Logistic回归过程报告自变量几率比的估计值。
获取Probit 分析
从菜单中选择:
分析> 回归> Probit...
选择一个响应频率变量。此变量表示对检验刺激表现出响应的个案数。此变量的值不能为负。
选择观察变量总数。此变量表示应用刺激的个案数。此变量的值不能为负,并且不能少于每个个案的响应频率变量的值。根据需要,可以选择“因子”变量。如果选择此变量,请单击定义范围来定义组。
选择一个或多个协变量。此变量包含应用到每个观察的刺激级别。如果要转换协变量,请从“转换”下拉列表中选择一个转换。如果不应用任何转换,并且有一个控制组,则分析中将包含该控制组。
选择Probit 或Logit 模型。
Probit 模型. 对响应比例应用probit 转换(累积标准正态分布函数的逆函数)。
Logit 模型. 对响应比例应用logit(对数几率)转换。
Probit 分析:定义范围
在此对话框中可以指定将分析的因子变量的水平。因子水平必须编码为连续整数,过程将对指定范围中的所有水平进行分析。
Probit 分析:选项
统计量。允许您请求下列可选统计量:频率、相对中位数强度、平行检验以及信仰置信区间。
相关中位数力. 显示每对因子水平的中位数强度比。还显示每个相对中位数强度的95% 置信界限。如果您没有因子变量或具有多个协变量,则相关中位数力不可用。
平行检验. 对所有因子水平具有共同的斜率这一假设的检验。
信仰置信区间. 生成确定的响应概率所必需的代理用量的置信区间。
如果选择了多个协变量,则信仰置信区间和相对中位数强度不可用。只有在选择了因子变量的情况下,相对中位数强度和平行检验才可用。
自然响应频率。允许您指定自然响应频率,即使在没有刺激的情况下也可以。可用选项有“无”、“从数据中计算”和“值”。
从数据中计算. 根据样本数据估计自然响应频率。数据应包含代表控制级别的个案,而该级别的协变量值为0。Probit 使用该控制级别的响应比例来估计自然
响应率以作为初始值。
值. 在模型中设置自然响应率(当您预先知道自然响应率时,选择此项)。输入自然响应比例(该比例必须小于1)。例如,如果当激励为0 时响应在10% 的
时间里发生,则输入0.10。
标准。允许您控制迭代参数估计算法的参数。可以覆盖“最大迭代次数”、“步骤限制”和“最优性容差”的缺省值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26