
SPSS统计基础---Probit 分析
Probit 分析
此过程度量刺激的强度与对刺激显示出特定响应的个案比例之间的关系。如果您具有二分输出,并认为该输出受某些自变量级别的影响或是由其导致的,并且尤其适合实验数据,则此分析非常有用。使用此过程可以估计引致特定比例的响应所需的刺激强度,例如中位效应剂量。
示例。新型杀虫剂对于杀灭蚂蚁的有效性如何,适用浓度多大?可以执行一项实验,对蚂蚁样本施用不同浓度的杀虫剂,然后记录杀灭的蚂蚁数量以及被施用杀虫剂的蚂蚁数量。通过对这些数据应用Probit 分析,可以确定浓度和杀灭效力之间的关系紧密度,并且可以确定在希望确保杀灭一定比例(例如95%)的蚂蚁时杀虫剂的适当浓度。
统计量。回归系数和标准误、截距和标准误、Pearson 拟合优度卡方、观察的和期望的频率以及自变量有效级别的置信区间。
假设。观察值应是独立的。如果自变量值的数量与观察值的数量相比过多(在某项观察研究中可能遇到这样的情况),则卡方统计量和拟合优度统计量可能无效。
相关过程。Probit 分析与Logistic 回归紧密相关;实际上,如果选择Logit 转换,则此过程最终计算的是Logistic 回归。总的来说,Probit 分析适用于设计的实验,而Logistic 回归更适用于观察研究。输出中的差异反映了这些不同的侧重方面。Probit分析过程报告不同响应频率下有效值的估计值(包括中位效应剂量),而Logistic回归过程报告自变量几率比的估计值。
获取Probit 分析
从菜单中选择:
分析> 回归> Probit...
选择一个响应频率变量。此变量表示对检验刺激表现出响应的个案数。此变量的值不能为负。
选择观察变量总数。此变量表示应用刺激的个案数。此变量的值不能为负,并且不能少于每个个案的响应频率变量的值。根据需要,可以选择“因子”变量。如果选择此变量,请单击定义范围来定义组。
选择一个或多个协变量。此变量包含应用到每个观察的刺激级别。如果要转换协变量,请从“转换”下拉列表中选择一个转换。如果不应用任何转换,并且有一个控制组,则分析中将包含该控制组。
选择Probit 或Logit 模型。
Probit 模型. 对响应比例应用probit 转换(累积标准正态分布函数的逆函数)。
Logit 模型. 对响应比例应用logit(对数几率)转换。
Probit 分析:定义范围
在此对话框中可以指定将分析的因子变量的水平。因子水平必须编码为连续整数,过程将对指定范围中的所有水平进行分析。
Probit 分析:选项
统计量。允许您请求下列可选统计量:频率、相对中位数强度、平行检验以及信仰置信区间。
相关中位数力. 显示每对因子水平的中位数强度比。还显示每个相对中位数强度的95% 置信界限。如果您没有因子变量或具有多个协变量,则相关中位数力不可用。
平行检验. 对所有因子水平具有共同的斜率这一假设的检验。
信仰置信区间. 生成确定的响应概率所必需的代理用量的置信区间。
如果选择了多个协变量,则信仰置信区间和相对中位数强度不可用。只有在选择了因子变量的情况下,相对中位数强度和平行检验才可用。
自然响应频率。允许您指定自然响应频率,即使在没有刺激的情况下也可以。可用选项有“无”、“从数据中计算”和“值”。
从数据中计算. 根据样本数据估计自然响应频率。数据应包含代表控制级别的个案,而该级别的协变量值为0。Probit 使用该控制级别的响应比例来估计自然
响应率以作为初始值。
值. 在模型中设置自然响应率(当您预先知道自然响应率时,选择此项)。输入自然响应比例(该比例必须小于1)。例如,如果当激励为0 时响应在10% 的
时间里发生,则输入0.10。
标准。允许您控制迭代参数估计算法的参数。可以覆盖“最大迭代次数”、“步骤限制”和“最优性容差”的缺省值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10