京公网安备 11010802034615号
经营许可证编号:京B2-20210330
充分利用大数据资源 提升社会治理智能化水平
大数据作为国家战略,正日益成为推动国家治理体系和治理能力现代化的核心驱动力。习近平总书记指出,“随着互联网特别是移动互联网发展,社会治理模式正在从单向管理转向双向互动,从线下转向线上线下融合,从单纯的政府监管向更加注重社会协同治理转变”。这“三个转向”,对社会治理智能化提出了新要求。
社会治理智能化,就是在网络化和网络空间基础上,通过大数据、云计算、物联网等信息技术,重构社会生产与社会组织彼此关联的形态,使社会治理层次和水平得到提升,使治理过程更加优化、更加科学、更加智慧。我们要准确把握“互联网+”时代社会治理创新面临的新形势新要求,充分应用好大数据资源,在促进大数据与社会治理深入融合中提升社会治理智能化水平。
顺应社会治理对象多元化的趋势,应用大数据提升社会治理的精准性
社会治理内嵌于社会结构之中,随着社会结构的变化,社会治理的对象、主体也必然发生相应的变化。一方面,当前社会治理所服务的对象结构发生了显著变化。具体表现为:社会阶层结构出现新老演化,人口的年龄结构、素质结构和空间分布结构发生了很大变动,老龄化社会加速到来,受过高等教育或拥有专业技能的群体日益扩大,家庭结构呈现规模小型化、类型多样化特征,社会流动性不断增强,跨地区流动已成为常态,越来越多的人口向大城市或中心城镇集聚。特别是思想活跃、利益诉求多样、跨群体触发能力强的新兴社会阶层对创新社会治理提出了很多新课题。另一方面,参与社会治理的主体,也从政府单一主体过渡到一个由政府、非政府组织、公众个体等构成的行动者系统。这些变化迫切需要提升社会治理智能化水平,也为社会治理智能化创造了良好条件。
智能化意味着精准分析、精准治理、精准服务、精准反馈。各类社会治理主体通过获取、存储、管理、分析等手段,将具有海量规模、快速流转等特征的大数据变成活数据,广泛应用于社会治理领域,更好地服务不同社会群体,将成为政府和社会组织实施精准治理、智能治理的重要法宝。
顺应社会治理环境复杂化的趋势,应用大数据提升社会治理的预见性
长期以来,社会治理面临的最大难题就是风险的不可控性和难以预见性。现代社会处于信息化和网络化复杂交织的图景之中,与我国经济转轨、社会转型的背景相叠加,使现代社会治理呈现出新特征。总的来看,我国经济社会发展面临的形势是严峻复杂的,表现为短期矛盾和长期矛盾叠加、结构性因素和周期性因素并存、传统安全和非传统安全威胁相互交织,特别是我国基层社会治理体系较为薄弱等等。以往,政府对经济、社会进行研究的实证数据,主要源于抽样调查数据、局部碎片数据、片面单一数据,有时甚至纯粹基于理论和经验假设,具有较大的局限性和模糊性。大数据技术能够通过交叉复现、质量互换、模糊推演等手段有效提升整合各方面数据资源的能力,使政府决策的基础从少量的“样本数据”转变为海量的“全体数据”,为有效处理错综复杂的社会问题提供新的可能性。
在所有的社会治理实践中,最难预测的就是不同于常规的“小概率”危机事件。在危机困境突然爆发时,管理者往往处于非理性决策与经验决策的状态,因而面临更大的风险性。大数据技术则通过GPS设备、RFID设备、视频监控设备、卫星遥感等各种传感器介入互联网终端,使自然与社会运动变化的征兆信息,以传感数据、交易数据、交互数据的方式为人所捕捉,有效减少信息盲点。在具体实践中,相关执法部门之间要加强数据资源的交流,在法律许可范围内和确保安全可靠的前提下,对社会治理相关领域数据进行归集、挖掘及关联分析,强化应对和处理突发事件的数据支撑,构建起智能防控、综合治理的公共安全体系。
顺应社会治理内容多样化的趋势,应用大数据提升社会治理的高效性
实现社会治理现代化,在任何国家、任何时期都是一项艰巨的任务。从我国实际来看,情况亦是如此。
在城市,基础设施建设管理、基本公共服务体系建设、流动人口管理、区域化协同治理、虚拟社会服务管理等方面的工作千头万绪,相互交织;在广大的农村地区,则面临着加强农村基层党组织建设、健全农村基层民主管理制度、加强农村精神文明建设、创新扶贫开发体制机制、民族宗教服务管理、留守老人妇女儿童管理等一系列问题。传统的政府治理体系和基本公共服务供给机制已远不能满足广大人民群众的多样化需求,也难以有效缩小城乡公共服务存在的明显鸿沟。在政府行政体制改革、日常管理和公共服务领域大力发展和运用大数据,有助于破解体制性障碍、机制性束缚、保障性困扰,实现城乡统筹而不是城乡有别、区域协调而不是区域分割,使发展成果更多更公平地惠及全体人民。
政府是社会领域提供公共服务的主体,要将大数据作为提升政府治理能力和治理现代化的重要手段,通过科学采集、高效整合政府数据和社会数据,加快实施大数据重大应用示范工程,建设大数据公共服务平台,在基本民生服务、公共事业服务、公共安全服务和公益基础服务方面发挥主体职责,带动全社会大数据的应用不断深化。此外,要加快培育经济类、慈善类、公益类、服务类社会组织,坚持政社分开、管办分离,通过政府授权、公助民办、购买服务等方式方法,提高社会资源利用效率和公共服务水平。现阶段,在健康医疗、文化教育、交通旅游、社区服务、社会养老等领域全面推广大数据应用已具备相当基础,可以进一步利用大数据洞察民生需求,不断满足人民群众日益增长的个性化、多样化需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11