京公网安备 11010802034615号
经营许可证编号:京B2-20210330
还不知道大数据、物联网、智慧城市三者之间的关系
大数据、物联网、智慧城市三者之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于物联网应用。
大数据的关键在于分享
大数据的类型大致可分为三类:
传统企业数据(Traditionalenterprisedata):包括CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
机器和传感器数据(Machine-generated/sensordata):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digitalexhaust),交易数据等。
社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
从理论上来看:所有产业都会从大数据的发展中受益。但由于数据缺乏以及从业人员本身的原因,第一、第二产业的发展速度相对于第三产业来说会迟缓一些。
大数据的关键在于分享。我国智慧城市发展的一个瓶颈在于信息孤岛效应,各政府部门间不愿公开、分项数据,这就造成数据之间的割裂,无法产生数据的深度价值。关于这一问题,一些政府部门也有清醒的认识,开始寻求解决方案,这是受自身的需求驱动的。比如,一些政府部门原来不愿分享自己的数据,但现在开始寻求数据交换伙伴,因为他们逐渐意识到单一的数据是没法发挥最大效能的,部门之间相互交换数据已经成为一种发展趋势。同时,随着各方面的发展及政策的推进,很多以前不公开的数据也逐渐公开了,这对大数据的发展都是有力的支持。
物联网中的大数据
相比传统的互联网,在物联网中,对大数据技术具有更高的要求,主要体现在以下几方面:
物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
物联网中的数据速率更高:一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无一不是物联网应用范畴;在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。
大数据支撑智慧城市的发展
城市运行体征是通过数据进行量化表现出来的,但这些数据散乱在政府的各个部门中。政府部门做的每一个决策都需要长期的调研,调研的资料来源于政府部门运行、城市运行的长期积累。政府信息化的高速发展已使政府产生了几百TB的数据。但数据本身没有任何意义,只有经过一定的系统分析之后,才能发挥数据的价值。智慧城市的每一个细节都会产生庞大的数据,同时,智慧城市的运行基础也来源于对大数据的深度分析。
大数据表面是一系列静态的数据堆砌,但其实质是对数据进行复杂的分析之后得出一系列规律的动态过程。政府部门本身没有去做这样的事,这就需要企业对其进行支撑。城市运行体征的管理也需要大数据的推动。大数据在反映城市运行体征的时候,并不需要了解城市部门的主要业务及运作流程,单纯从数据的角度出发,通过计算机软件分析之后,数据就能得出一些规律,不关乎业务,不关乎结果,但能完全反映出数据之间的关联性。从大数据的角度出发,驱动城市运行体征发展,是一个可以在决策前段刨出人力的纯计算机运作模式,这样的好处是运作的量化和规范化。
大数据驱动下的智慧城市,关乎每个人的生活。最普遍的例子就是天气预报,以前的天气预报只会预测一下天气,但现今的天气预报会告诉公众更多的信息,如气象指数、空气污染指数、穿衣指数、驱车安全指数等,甚至是否有利于运动,对发型及妆容的影响都有说明。这是能让普通百姓切身体会的智慧生活,未来,教育、交通等关乎人们衣食住行的方方面面都会变得智慧起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31