
碎片化、干货、速成…这类流行词正在让你慢慢变傻
生活在这个快捷的时代,很多人都热衷于“快餐式”生活。
于是“碎片化”“干货”“速成”“公开课”等逐渐成为流行热词。
而碎片化学习的最大危害是让人们把“知道”当做“懂得”。
网上有个段子关于这群热衷干货喜欢走捷径的人:
“如果你每天还在看耶鲁公开课,上3W咖啡听创业讲座,知乎果壳关注无数,36氪每日必读,对马云的创业史了如指掌,对张小龙的贪嗔痴如数家珍,喜欢罗振宇胜过乔布斯,逢人便谈互联网思维……那你应该还在每天挤地铁。”
学习本质是获取信息,知识系统全面
在没有一个整体框架和知识系统的基础上进行碎片化学习,都无济于事。
碎片化学习太浅且片面,读的太零碎,就不习惯集中精力阅读。
我们是否经常打开一个网页看个标题就关闭了;看别人的答案扫完第一段就开始去写评论了;知道某本书,看个序言就觉得自己读过了。碎片式阅读慢慢变成自欺欺人,不懂装懂,连自己都骗。
快消知识产品陷阱
就拿商业数据分析这门知识来说,很多人会购买一些书籍,比如叫做《R/Python等某某软件入门到精通》,《大数据某某行业案例》,《人工智能/机器学习》等等。这些书籍是否有一个科学的完整体系?是否包含数据分析前后内外的各项技能?是否这些书纯粹是跟随热点,实为茶余饭后的畅销阅读物?
有些在线学习平台和培训机构,推出一些低价便宜的专题课程,如:百元就能玩转数据分析,机器学习从零进阶,5个小时的课有着完整的知识体系。先不问课程质量如何,这些课程的目的是什么? 无非是以免费吸引眼球,以低价博取青睐,以包装获取芳心。在快速消费的时代将知识拆分,推出各类便宜的手榴弹,一次次轰炸用户的头脑,而这时的你如果被炸到一次是否就开始动心了呢?
碎片化学习的弊端
其实,抛开这些快消付费知识产品,按照自身情况来看,如果没有统计数学基础去学一门软件,你确实会学会如何操作软件,但学完也不会实际解决数据分析问题。
如果你没有实际做过数据挖掘的项目就去学机器学习,学完你也只会领悟到机器学习的概念,而不是精髓。
这就好比,你去学一门刀工技术,学完你会宰杀一头猪,但不知道猪的各个部位应该如何剖解,如何处理。
数据分析正确的学习方法是?
理论从实践中来,又反过来指导实践。所有的规则,都是“经验→思考→结论”的产物。
歌德说过:“要想让别人反复思考的智慧真正成为我们自己的,一定要经过自己再三思考,直至它们在我们个人经验中生根为止。”
这世上唯一的捷径是行动:勤奋地阅读、勤奋地思考、勤奋地实践。
走得太舒服的路,往往都是下坡路,不愿意花时间和金钱去投资,都徘徊在边缘。
你想要的结果,必须自己一步一步走出来。
CDA携手网易云课堂给你这个机会,不仅仅教你完备的知识,还有系统的学习过程和学习方法,更重要的是教会你实际运用。
在还没有完备掌握知识体系的情况下,让我们远离碎片化的谎言,静心学好数据分析。
CDA的完备知识体系
CDA数据分析师云课堂微专业
好课嘉年华,狂欢最后两天。
领取225元入场PASS券,全场通用
微专业一:《数据分析师(Excel)》,主讲:李奇
微专业二:《数据分析师(SQL)》,主讲:李御玺
CDA微专业专场(扫码进入):
CDA数据分析学习路径-体系课程
三条路径,涵盖CDA LEVEL 1+LEVEL 2大纲,三个月掌握完备技能
路径一:非编程方向
路径二:R语言方向
路径三:Python方向
感兴趣的童鞋们可加入CDA课程咨询群,有专业老师为您解答哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13