
大数据不仅是一种资源,更是一种思考营销的全新方式
置身于当下的每个营销峰会,人们讨论的焦点都绕不过这两个字。台上的演讲嘉宾中,开始有了越来越多互联网的身影,从他们口中蹦出的专有名词也不再为传统广告人熟知,每个广告主看起来都开始更关心效果而非创意。
种种迹象表明,广告的变局正悄然开始。
没有人会否认大数据对广告营销的重要性,但也没有人能否认,随着数字营销进程的不断加快,传统营销的经验已经不适用于这个新的时代。广告主们正走入“无人区”,它们亟需一套新的方法论解决营销过程中产生的全新的难题:如何解决数据孤岛?如何把数据应用于实战?以及,如何在最大程度上挖掘出每个数据的价值?
从广告营销公司的层面来说,一套营销方法论同样重要,这是它们应对数字化时代的良方,否则就有被甩下急速行驶列车的可能。尤其当你知道身处一个目的地满是掘金机会的列车时,谁也不愿意中途下站。
作为一家移动广告平台,多盟对数字化时代有着更深的理解。与鳞次栉比的纯技术公司不同,凭借自身对移动互联网营销的深入理解,它的数字营销方法论天然带着更多服务的基因和对营销变化更精准的洞察。
在今年的GMIC上,蓝色光标集团副总裁、多盟总裁边嘉耕受邀做了《数据赋能,营销智能》的演讲。这场演讲向人们全面阐释了多盟的一套名为“DATA+”的系统化解决方案,通过这套方案,多盟能够为每个客户提供定制化的数据及策略解决方案,并提供面向策略、运营和营销管理的咨询服务,而这为那些处于困惑中的广告主们指明了方向。
选择多盟这样一个移动营销行业中数据运用领先的公司作为案例,可以管窥广告营销公司未来该如何应对席卷而来的数据浪潮,并且怎样在其中腾挪移转争取出自己的生存空间。
媒体驱动vs数据驱动
在这场主旨演讲中,边嘉耕提到多盟成立的这七年,也正是移动营销从“媒体驱动型”向“数据驱动型”转变的时期。这让很多广告主及营销公司感同身受,因为这个洞察与他们的切身体会完全吻合。
从历史的维度去看,早期的广告营销公司往往通过掌握媒体资源构建起自己的壁垒。所以,以往判断一家公司是否有价值的标准在于它是否能与更多的媒体建立起合作关系。在高度数字化之前,广告投放遵循着工业时代的经验进行:大投入、多媒体、饱和式攻击……我更愿意将这个阶段定义成“粗放式”的广告经营模式。
但当技术的进步让广告主和媒体能够精细化操作每个流量和接触点之后,媒体资源以外,在实操层面使用数据的能力也开始变得至关重要。
在多盟团队看来,市场中从不缺乏数据,不同的市场主体也都在纷纷构建自己的数据库。但一个不幸的现象是,数据越多,孤岛越多。“DATA+”中的重点在“+”,而不是“DATA”,这意味着如何打通、管理和分析数据是更为重要的,只有这样才能帮助品牌抓住实现生意持续增长的机会。
这已经成为了行业痛点,一个最新的例子是,具有指标意义的可口可乐公司直接用首席增长官取代了首席营销官。
在多盟的构想中,DATA+应该在数据上形成一个闭环,并且在实践过程中根据市场反馈螺旋迭代、向上发展。目前的核心产品模块包括三大类:前端是基于互联网行为数据的营销策略推荐,中端是数据驱动的营销管理系统,后端是提供端到端的闭环数据服务方案。从策略、管理到服务,数据真正活起来了,它的价值能够反复被挖掘,直到最大化。
边嘉耕用了三个标签阐述对团队的定位:广告狂人之外,他们还是技术达人和数据专家。他的定位也反映出未来广告营销公司的一个发展趋势:数据和技术能力将成为比拼的关键战场,不管对于4A这样的巨兽还是技术公司均是如此。
总的来说,数据已经不再仅仅关系着最后的投放环节,还开始影响广告公司的前端创意以及与广告主的沟通交流。高举数据的大旗,并真正脚踏实地地思考营销方法论的革新,从广告主心态的转变以及技术的演进史思考,这么做都势在必行。
占有数据vs使用数据
现在的广告主容易陷入这样一种迷思:认为大数据的重点是“大”,所以对数据的重视只限于收集和存储的层面。但实际上,中国的数据市场割裂非常严重,广告主手上只握有一方数据,更大量的数据集中在互联网媒体手中,但这些媒体对于营销的经验并没有深耕多年的专业公司来得充足。
到头来,广告主的大数据,从收集的角度来讲量不够大,从使用的角度来讲效果也不够好。
多盟认为这给广告营销公司提供了难得的机会:在品牌对数据不了解、媒体对营销不了解的背景下,站在广告主一方的专业公司能够帮助企业对数据建立更清晰的认知,也能更合理化地运用。
人们对广告营销公司推动大数据的质疑,往往集中在能掌握多少数据,对数据的控制力有多强。但实际上,相较简单地占有数据,使用数据才是更关键的环节。
从某个层面讲,《大数据时代》这本具有指标意义的书提供了一些不太完善的观点,譬如认为数据量越大越好。但实际上,漫无目的地追求数据量不太聪明,庞大的数据规模反而会降低分析效率。坦白讲,大数据拼到最后不是比拼谁多,而是在数据赋能之前如何为数据赋能的能力。
以广告发布前的A/B Testing为例,DATA+的解决方案中对数据进行了相当精细化的处理。面对同样的一个数据集,多盟可以从目标受众、创意呈现、体验路径、产品组合/促销方案四个维度深挖价值。
而在针对目标受众的分析中,DATA+首先会将消费者划分出几个不同的子集,并分别从互动、点击、拉新等层面考察每个子集的反馈效果。一目了然的细分数据让广告主了解到如何向正确的人说正确的话,在这个过程中,数据从“一库一吃”变成了“一库多吃”,即使是有限的数据用好了也能发挥出惊人的价值。
所以,数据固然重要,但通过技术产品的优势挖掘数据,并将成果直接应用于营销实战更加重要,这些正是多盟这类营销技术公司能做好的。
边嘉耕选择用大树来形象地阐释DATA+的产品结构:它的树根是多方数据源,树干是数据的基础处理能力,顶端散发出的树枝是一个个模块化的数据产品,而树枝上的树叶则是定制化的解决方案。数据的养分从底端不断向上传导,最终整个大树枝繁叶茂。
媒体视角vs广告主视角
在明确数据使用比简单的数据占有更重要之后,应该采用怎样的视角使用这些数据对营销同样重要。
以精准投放中最重要的标签转译为例,腾讯、京东、头条、优酷这些重要的流量方,它们都有自己的标签体系,有些更为成熟的系统还有自身的人群挖掘规则。但是,将品牌的感性目标人群画像转译成理性的标签非常困难,难点在于这并非简单的基于人口结构的划分。
要让这些数据的价值变得更大,必然需要结合营销的相关理论和经验。譬如同样是产妇,适龄产妇和高龄产妇在消费心理和决策模型上大相径庭;同样是准备旅游的人,马上出发和一个月之后出发关注的点也截然不同,这些差异需要专业的营销人士加以区隔和整理。所以,从广告主视角出发使用数据远比媒体视角重要。
DATA+的人群策略系统通过对多方DMP的运用,可以深入分析品牌目标的种子人群,再加上营销人员根植于营销体系多年形成的经验判断,能够产出更具结构化的人群策略以及更佳细腻且适配的标签方案,更好地实现“技术+营销”的结合。
边嘉耕在演讲中分享的一个案例能够更系统地阐释两种视角间可能出现的差异。此案例的广告主是某进口敏感肌洗衣液,在策略重构的模块,营销专家们从购买兴趣和认知程度两个维度构建了一个3*3的矩阵,将人群细分为准妈妈、烦恼客、讲究咖等9个人群。随后根据不同人群制定不同的传播方案和沟通策略,譬如在针对精明妈的推广中,就使用“宝宝护肤,从选对洗衣液开始”的诉求。在投放的环节,则根据广告主的目标和预算规模作为主要考量进行最优化的配置。在线下推广的部分,多盟也为9个不同类型的人群定制化了不同的促销方案。
坦白讲,媒体方(或者说流量方)需要耗费很多精力才能完成整个营销活动的策划流程。但对于有着多年经验的营销公司来说,他们显然更加轻车熟路。
多盟的团队用了一个形象的比喻解释自己如何站在广告主的角度做事:“如果把数据比作一条鱼,我们不仅要让广告主吃上鱼,还要告诉他鱼是一种什么动物,生活的环境如何,我们大概怎么捕到鱼的。”某种程度上,和广告主的沟通也不仅是产出并执行一套方案这么简单,弥合广告主对数字营销认知的差距会让整个过程更有意义。
坦白讲,数字营销是没有止境的,大数据不仅是一种资源,更是一种思考营销的全新方式。在数据驱动的营销背景下,从广告主的视角合理地使用数据变得愈加重要。而数据也不应该成为一个个相互隔绝的孤岛,更不应该拉大产业链中各企业间的差距。理想的方式是各司其职、共同发展,而多盟和它的DATA+想做的就是这样的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17