京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:CMH检验(分层卡方检验);辛普森悖论,数据分析的谬误
只涉及两个分类变量的卡方检验有些时候是很局限的,因为混杂因素总是存在,如果不考虑混杂因素,得出的分析结论很可能是谬误的,这就是著名的辛普森悖论。辛普森悖论的故事是这样的:1973年秋季,加州大学伯克利分校研究生院的新生入学。有些人在看到学校两个学院的综合录取表格后,怀疑学校在录取学生时存在性别歧视,因为女生录取率低于男生,如下表所示:
为了平息质疑,校领导根据学院的不同,将综合录取率拆开,分别考察商学院和法学院的录取情况,结果惊奇的发现两个学院的女生录取率都高于男生。
出现这种矛盾的原因:1、商学院的录取率远高于法学院;2、男生和女生申请商学院和法学院的比例不同,更多的男生申请商学院,而女生则更多申请法学院。虽然商学院和法学院都是女生录取率高于男生,但综合两个学院的数据后,女生的录取率却低于男生了。
以上的辛普森悖论对数据分析者是个很好的警醒:有些分析结论看似准确,板上钉钉,实则不然,可能背后隐藏着一些分析者没有注意到的潜在因素,这要求数据分析者对研究背景非常熟悉,避免忽略重要的潜在因素。辛普森悖论又一次说明数据分析是一门理论和实际联系非常紧密的科学,缺一不可,甚至研究背景更为重要。
CMH检验
CMH检验的全称是Cochran’s and Mantel-Haenszel statistics,由两个伟大的统计学家的名字组成,又称为分层卡方检验,CMH检验能够很好的解决辛普森悖论的出现。例如上面的典故,考察的是不同性别的录取率差异,而学院是对分析结论有显著影响的潜在因素,CMH检验可以对学院这个分类变量进行控制,得出不同性别录取率之间是否存在差异。
前面的内容介绍过,根据两个分类变量水平数的不同,卡方检验可以分成2*2、R*2、2*C和R*C等类型,从CMH检验的原理来说,适用于以上所有的情况,但是SPSS软件只能对2*2四格表卡方进行CMH检验,也称为K*2*2表格数据的CMH检验。
用个具体的医学案例来说明K*2*2表格数据的CMH检验。大家都知道吸二手烟对身体有害,那么这种主观的判断是否正确呢?某个医学组织对此展开了研究,研究吸二手烟是否会提高患癌风险,根据实际情况,调查者自己是否吸烟会严重影响吸二手烟和患癌风险间的相关性,因此将主动吸烟(自己是否吸烟)作为混杂因素处理。首先给出吸二手烟与是否患癌的2*2四格表资料:
如果将混杂因素也放入表中,那么数据资料可以整理成以下形式,可以发现原来的单元格内的频数被拆分开了。
CMH检验的统计量计算公式根据是否进行连续型修正,分为为连续性校正和连续性校正两个,两者之间的差距不大,通常以校正结果为准。它们的计算公式如下:
从CMH统计量的计算公式可以知道,CMH检验将所有2*2表格(混杂因素有几个水平就有几个2*2表格)的频数分布情况都考虑在内了,这样就对混杂因素的影响作出了控制。计算上面这个案例的CMH卡方值:
我们以修正的CMH检验卡方值13.942为准,查自由度为1的卡方分布表,卡方值13.942对应的显著性概率值为0.00018,小于0.05,说明剔除主动吸烟影响后,患癌与被动吸烟之间确实存在相关性。
CMH检验的共同比值比
对于2*2四格表,比值比的计算是必须的,比值比能够表示不同组间的相对危险程度。CMH的比值比(OR值)同样与不考虑混杂因素的比值比计算公式不同,CMH检验的共同比值比计算公式为:
旧以上面的案例数据为例,计算案例的CMH共同比值比,计算过程如下:
消除主动吸烟因素的影响后,OR=1.625,说明患癌人群中被动吸烟人数比例大约为未患癌人群的1.625倍。接下来还能够计算共同比值比的置信区间,这个过程草堂君就不继续描述了,通过软件都可以直接输出。
SPSS案例分析
将上面的案例整理进入SPSS软件中,然后运用软件中的Cochran’s and Mantel-Haenszel检验功能进行分析,对比软件输出结果与上面的手动计算结果是否一致。这个过程能够帮助大家更好的理解CMH检验的理论逻辑。录入SPSS的数据情况如下:

分析步骤
1、首先进行个案加权,将文件中的频数作为加权依据。具体的操作步骤,请点击下方文章链接回顾:SPSS分析技术:加权个案;让频数记录数据也能用SPSS做列联表分析。
2、选择菜单【分析】-【描述统计】-【交叉表】,在跳出的对话框中,进行如下操作。根据上面的表格数据,将是否患癌选为行变量,将是否被动吸烟选为列变量,将是否主动吸烟选为混杂因素。点击【统计】按钮,选中卡方选项;再选中柯克兰和奥特尔-亨塞尔统计,检验一般比值比的框内填写1即可(比值比为1,表示患癌组和为患癌组的被动吸烟比例相同)。
3、点击确定,输出结果。
结果解释
1、K*2*2频数统计表。可以发现,输出的表格和上面案例的整理表格结果是完全一致的。
2、分层2*2四格表的卡方检验结果。从结果可知,主动吸烟人群中,皮尔逊卡方、连续性修正和费舍尔精确检验的结果都是小于0.05,说明患癌和被动吸烟间存在相关性。而不吸烟人群中,结论于此相反,患癌和被动吸烟间不存在相关性。不考虑主动吸烟的混杂因素,结果是患癌和被动吸烟间存在相关性。
3、比值比齐性检验结果。在操作步骤中,检验比值比的值为1。两种比值比齐性检验的结果都大于0.05,说明两个分层2*2四格表的比值比与1之间没有显著性差异,也就是两个分层四格表的比值比是齐性的。
4、柯克兰和奥特尔-亨塞尔检验结果。可以发现SPSS输出的结果分成两个,柯克兰卡方值14.451和我们手动算的未连续性校正的结果一致,而曼特尔-亨塞尔卡方值则与连续性校正的结果一致。显著性结果都小于0.05,说明剔除主动吸烟影响后,患癌与被动吸烟之间确实存在相关性。
5、综合比值比结果。从结果可知,CMH检验的综合比值比结果也和我们手动算的一致。比值比区间为1.264到2.09之间,不包括1,说明患癌人群中被动吸烟人数比例确实比未患癌人群的比例高,高出1.264到2.09倍。
总结一下
本篇文章介绍了CMH检验的分析理论和SPSS的分析操作过程。可以知道,CMH检验能够将非实验考虑的混杂因素剔除,使得获取的分析结果能够真正表明两个分类型变量之间的关系,避免很多谬误的产生。CMH检验在医学领域和实验设计领域都扮演非常重要的角色。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12