
R语言对回归模型进行回归诊断
在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。
因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差最小,说白了就是估计出来的值误差最小;但是在使用最小二乘法的前提是有几个假设的。
这里我就引用《R语言实战》的内容了,在我大学中的《计量经济学》这本书讲的更为详细,不过这里主要是介绍使用R语言对模型进行回归诊断,所以我们就不说太详细了;
假定
正态性:对于固定的自变量值,因变量值成正态分布,也就是说因变量的是服从正态分布的
独立性:Yi值之间相互独立,也就是说Yi之间不存在自相关
线性:因变量和自变量是线性相关的,如果是非线性相关的话就不可以了
同方差:因变量的方法不随着自变量的水平还不同而变化,也可称之为同方差
为了方便大家使用和对照,这里就使用书上的例子给大家介绍了,在系统自带的安装包中women数据集,我们就想通过身高来预测一下体重;在做回归诊断之前我们得先建模;
首先我们先看一下数据是长什么样子的,因为我们不能盲目的拿到数据后建模,一般稍微规范的点流程是先观察数据的分布情况,判断线性相关系数,然后在考虑是否建立回归模型,然后在进行回归诊断;
R代码如下:
data('women')
women
结果如下
初步观察数据大概告诉我们体重就是跟随着身高增长而增长的,再通过画一下散点图观察。
R代码如下
plot(women)
然后我们在判断一下各个变量之间的线性相关系数,然后再考虑要不要建模
R代码如下
cor(women)
结果如下
从相关系数的结果上看,身高和体重的相关程度高达0.9954,可以认为是完全有关系的。
根据以上的判断我们认为可以建立模型去预测了,这时候我们使用LM()函数去建模,并通过summary函数去得到完整的结果。
R代码如下
model <- lm(weight~height,data=women)
summary(model)
出现这个问号原因是由于电脑字符集问题;稍微解读一下这个结果,RESIDUALS是残差的五分位数,不知道五分位的可以百度一下,这里不多说,下面的结果height的回归系数是3.45,标准差是0.09114,T值为37.85,P值为1.09e-14,并显著通过假设检验,残差的标准差为1.525,可决系数为0.991,认为自变量可以解释总体方差的99.1%,调整后的可决系数为0.9903,这是剔除掉自变量的个数后的可决系数,这个比较有可比性,一般我都看这个调整后的可决系数。结果就解读那么多,因此得到的结果就是
上面只是借用了一个小小例子来讲解了一下R语言做回归模型的过程,接下来我们将一下如何进行回归诊断,还是原来的那个模型,因为使用LM函数中会有一些对结果评价的内容,因此我们用PLOT函数将画出来;
R代码如下
par(mfrow=c(2,2))
plot(model)
结果如下
左上:代表的残差值和拟合值的拟合图,如果模型的因变量和自变量是线性相关的话,残差值和拟合值是没有任何关系的,他们的分布应该是也是在0左右随机分布,但是从结果上看,是一个曲线关系,这就有可能需要我们家一项非线性项进去了
右上:代表正态QQ图,说白了就是标准化后的残差分布图,如果满足正态假定,那么点应该都在45度的直线上,若不是就违反了正态性假
左下:位置尺度图,主要是检验是否同方差的假设,如果是同方差,周围的点应该随机分布
右下:主要是影响点的分析,叫残差与杠杆图,鉴别离群值和高杠杆值和强影响点,说白了就是对模型影响大的点
根据左上的图分布我们可以知道加个非线性项,R语言实战里面是加二次项,这里我取对数,主要是体现理解
R代码如下
model1 <- lm(weight~height+log(height),data=women)
plot(model1)
summary(model1)
结果如下
诊断图
模型拟合结果图
综合起来我们新模型貌似更优了;我就介绍到这里,具体大家可以看书籍
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26