
大数据在出版业的应用推广面临的四大困难
与教育、医疗、旅游、交通等领域相比,出版领域具有更强的独特性和复杂性,因此大数据在出版业的应用推广存在诸多困难,这些困难可以归纳为四个方面:标准问题、治理问题、应用问题、安全问题。
标准问题:制定和推广仍需加强
当前出版业大数据标准化工作的路径是:首先对出版发行大数据工作进行定义,然后寻找已经有的一些现成标准基础,这些标准是可以被我们所利用的。这些工作完成后,我们需要建立一个数据流程的标准化模型。
通过对现有应用示范标准情况进行分析,一方面,已经发布和在研的一些标准,适用于出版业大数据环境,提供了一定的基础,但是缺乏系统的标准化整体规划;另一方面从标准分类上来看,大多集中在数据基础管理、采集、接口和存储等方面,而针对开放数据集、数据服务平台、数据分析、数据应用等产品和服务形态的标准缺失。
治理问题:亟待建立完整治理模式
数据治理的目的是提升出版业数据质量,保护数据隐私安全,保障数据合理应用,促进数据合法共享。出版行业应尽快出台大数据治理的相关办法,建立完整的大数据治理模式,指导出版业数据的获取、存储、互换以及重复利用;将数据库、服务平台、资源平台等产生的数据进行规范化采集与汇聚共享,形成全国一体化的大数据中心,共同参与到数据的治理与创新应用中。
应用问题:缺乏可推广模式是短板
如果说大数据的应用是大数据产业的商业价值终端,那么出版业知识服务体系构建与数据分析是当下行业公认的大数据产业的核心,是出版业大数据能够点石成金的两大利器。
——在知识服务体系构建方面:出版企业要认识到出版的核心价值取决于以内容为底蕴的知识、信息价值,这是出版的基本原理。出版业要善于利用大数据技术加强对信息、知识的序化、组织、整理能力,生产转化出可向受众传播的知识信息产品,构建未来新的核心竞争力。
——在数据分析方面:特别是在政府管理与公共服务体系建设层面,出版业数据分析工作需进一步扩大行业覆盖面,完善统计指标体系和数据监测系统,规范与出统计有关的术语用法,健全数据信息公开制度,使数据信息更加科学、全面地反映行业发展态势,为政府和业界科学决策提供参考。
安全问题:确保合法使用,有利融合创新
对于传统出版业来说,大数据在相当长的时间内仍将是一个概念,但即使目前没有大体量的数据,出版业仍有必要为大数据实践做好准备,其中最大挑战之一是数据所有权、隐私保护等安全问题。
大数据的兴起为出版业重塑商业模式、预测市场风险等提供新契机的同时,也会引发滥用数据与侵犯隐私等法律、政策问题。特别是数据资产化后,数据治理——对数据的产生、收集、保存、维护、分析、应用的整个生命周期的管理将成为一个新的课题,其中数据安全与隐私保护便成为行业普遍担心的重要问题。
因此,相关部门有必要从数据安全的角度,对数据的开放程度、开放范围、开放对象都进行深入论证,以确保数据的使用是合法的,是有利于出版融合创新发展的。管理部门应对出版数据加强监管,制定数据运营商准入标准,授权运营资质。非官方机构在使用数据进行研究时,需要满足相关规定并取得相关许可,才能获得数据的使用权力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08