京公网安备 11010802034615号
经营许可证编号:京B2-20210330
充分挖掘信访大数据的价值
信访大数据的价值在于信访调研、访情预判、绩效考核、管理决策、记录历史。
日前,最高人民法院院长周强会见出席第三届世界互联网大会智慧法院暨网络法治论坛客人时指出,在全球信息化深入发展的大背景下,世界各国法院都在努力推动信息技术在法院工作中的应用。如何与时俱进,摸准时代的脉搏,搭上人工智能的快车,这是智慧型法院建设需要思考的问题。如何借助信访大数据将信访工作引领上快车道,并借助人工智能推动信访工作变革,这是新时期信访工作面临的重大课题。
信访之所以产生,一个重要原因在于,在当事人看来没有感受到公平正义。因此,要实现让每一个当事人都感受到公平正义的司法目标,信访人的每一次信访就成为了有价值的数据。因此,基于这些信访数据的分析就成为了信访工作升级换代的核心要素。在一定程度上讲,抓住了信访大数据,就抓住了新时期信访工作的关键点。建立在信访大数据基础上的人工智能分析,能为信访苗头预判、信访管理决策、调查研究等方面提供精准的个案攻克战术、科学的工作战略,创造出符合司法规律的优质高效型的司法格局。
信访大数据首要价值在于信访调研。传统的信访调研,所依托的样本数据常常不完整、缺乏接谈过程、接谈成效等重要环节,所作事实判断往往缺乏客观性。囿于经历的有限性,研究人员往往通过抽样分析进行调研,这样得出的结论偏差难免。信访大数据要求接访人将每一次来访的信访人的年龄、性别、诉求及理由、工作单位、诉讼史、信访史、案件案由、投诉事项、接谈过程、化解方案、化解效果等等项目完整录入数据库。在完整且客观的信访数据基础上,调研人员能依托人工智能,进行“全样本数据”分析,使得结论最大可能地接近信访规律。
其次,信访大数据的价值在于访情预判。凡事预则立,不预则废。如果我们能从源头上对信访做预判,实现未雨绸缪,将信访消灭在萌芽状态,那么司法工作秩序将能升级到全新的格局。完备的信访大数据库加人工智能,让全样本分析的实现成为可能。在此基础上,信访人信息、信访事由和诉求之间的相关性预知就能更科学。信访数据一旦和案件管理系统产生交互,从立案环节就能对信访苗头作出初步判断,并在后面的审判、执行等程序中步步提醒,最大程度实现信访预判和提醒,最终实现谋略先于未动,转变以往的事后补救为事前预警防范。
第三,信访大数据的价值在于绩效考核。在各个司法岗位上,客观公平合理的绩效考核机制对激发干警的主观能动性不可或缺。用案件量、结案量等数字来考核审判法官显得粗糙。科学的激励机制除了考虑数量外,还需考虑质量。衡量质量好坏的其中一个标准就是当事人是否在司法过程中感受到了公平正义。信访部门作为司法服务的“售后”或者投诉部门,是未感知到公平正义的当事人的集散地,更是抱怨和意见的“回收站”。建立信访大数据库,将当事人每一次来访都完整记录入库后,我们可以测算出当事人对各具体到某位司法工作人员或业务部门的不满意度,以在司法服务质量上为绩效考核贡献依据。另外,以前对接访员的考核停留在接访数量上,而有了大数据库后,接访的时间长短、接访的成效也加入到了考核因素中来,能较为全面地从数量和质量上对接访人员进行考核。
第四,信访大数据的价值还在于管理决策。传统的管理主要依托经验积累和对事实的调研,以求得科学管理、精准决策。由于收集的信访信息缺乏完整性和客观性,以及分析技术匮乏,传统信访管理中经验就占据了重要位置。但很多经验的传承存在着不全面、不准确的问题,这就使得信访管理一直停留在粗糙阶段。信访数据库的建设以信访信息客观、详实、完备为目标,以量的积累突破经验的局限性,最终为科学的调研和精准的预判提供了坚实的判断基础。这样,信访管理决策层不论是在信访个案中寻找攻克战术、还是在整体信访管理工作中制定科学的工作战略,都能实现管理决策科学化、精准化,为立案、审判和执行工作全方位服务,最终创造出符合司法规律的优质高效型司法格局。
最后,信访大数据的价值还在于记录历史。今天就是明天的历史,站在未来的角度来看,现在信访人的每一次信访都是历史。以法制史明鉴,能启迪未来的法律人审慎思考我们的民族究竟适合一个什么样的司法,启发未来学者探究符合国情的司法路径和方向。信访史是法制史中最原生态的一环,它最真实地反映了司法现状,将法律全球化中法律移植带来的不良反应、司法过程中反映出的制度漏洞和法律局限性暴露无遗。但遗憾的是,信访档案在传统的信访工作中是残缺的。信访大数据库的价值就在于,将信访人每一次来访都全方位记录在案,包括接访过程中图片、视频和音频资料都入库。这些资料在将来都是法制史资料,它为未来法律人对法律秩序的探索、司法公正内涵的准确诠释、法律制度的完善都大有裨益。
时下,“人工智能”和“大数据”等新概念层出不穷,这已经预示着我们已经进入一个高速发展的全新时代。从认识论上接受这些新概念、新事物,并吸收科技智能时代带来的福利,掌握并熟练操作新的工具,这将使我们的司法服务实现跨越式发展。在智慧法院建设的大潮中,以信访大数据和人工智能为依托的信访工作模式应该成为每一个司法机关的标配。增配和培养技术人才,开发和完善数据库储存软件,积累并充分挖掘信访大数据资源背后的潜在价值,研究和运用数据分析成果为信访调研、预判和管理决策提供依据……如此,将能最大程度地满足人民日益升级的优质高效司法需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04