
对号入座 ▏如果说R语言有三重境界,你是第几重?
王国维在《人间词话》中将读书分为了三种境界:“古今之成大事业、大学问者,必经过三种之境界:‘昨夜西风凋碧树,独上高楼,望尽天涯路’。此第一境也。‘衣带渐宽终不悔,为伊消得人憔悴。’此第二境也。‘众里寻他千百度,蓦然回首,那人却在灯火阑珊处’。此第三境也。
这里仅根据所取资料对R学习进程进行大致分类,也欢迎R语言大牛批评指正。
第一阶段:初级,掌握R的语法和一些常用库的使用及数据操作。
需要掌握基础的文件操作、数据结构知识,认识什么是数据框、列表、矩阵、向量,如何提取、置换、删除、运算、转换、修改数据(包括单个数、行、列、表、变量),安装包、调用包以及session的保存。完成这一阶段,你就大致能像excel里处理数据一样了。
第二阶段:中级,掌握自己特定领域的库,非常熟悉R的特性,并且可以使用R进行统计分析,批量处理和绘图。
如果你完成了以上两个阶段,你已经可以在工作学习中完成绝大部分的工作。但如果你是知识的创造者,或者是个程序员,或者是要实践自己的算法、理论、统计方法、绘图方法,或者亦或是你只是脑抽了,那就要进入第三阶段的学习。这部分包括, R语言调试、改进、编写包、写一个地道的帮助文档、推销自己的项目想法。这一阶段完成了,你也就是一个R语言的大牛了。少年到处是你可以施展拳脚的地方。
第三阶段:高级,掌握数据挖掘流程和算法知识,从整个工程项目着眼,考虑项目实施,分配,性能优化等。
从大局入手,着眼于全局,规划好项目的布局,设定好相应的文档说明,提供工程下载安装的方法,带几个demo,每个类,每个函数,每行代码都反复推敲,相信这时候R于我们便是信手拈来了!
现在的你是第几重境界?
CDA针对R语言这不同的三重境界,特别开放谢佳标老师的R语言课程,欢迎对号入座!
谢佳标
微软中国MVP,多届中国R语言大会演讲嘉宾,目前在创梦天地担任高级数据分析师一职, 作为创梦天地数据挖掘组的负责人,带领团队对游戏数据进行深度挖掘, 主要利用R语言进行大数据的挖掘和可视化工作。
从事数据挖掘建模工作已有9年, 曾经从事过咨询、电商、电购、电力、游戏等行业,了解不同领域的数据特点。 有丰富的利用R语言进行数据挖掘实战经验。
合著《R语言与数据挖掘》及《数据实践之美》等书籍,均在京东有卖。此外《R语言游戏数据分析与挖掘》预计将在2017年上半年出版。
谢佳标老师课程合集
点击阅读原文,或扫描下方二维码了解课程详情
大神一对一
想跟覃老师一对一交流?在学习中接受覃老师的学习指导?更多交流互动请扫码添加qq群(不定期发放干货资料)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10