
SPSS分析技术:含时间依存性自变量的Cox回归分析
在介绍Cox回归模型时,我们提到过Cox回归模型有一个基本假设,就是纳入模型中的自变量不具有时间依存性,也就是自变量对风险函数的影响不随时间的变化而变化,如果违反这条假设,就需要将时间的影响也纳入模型一起考量,这就是具有时间依存变量的Cox回归模型。
模型原理
在进行生存分析时,有些自变量对风险函数(事件发生概率)的影响会随时间的变化而变化,这种现象在医学领域其实非常常见。例如,二次世界大战以后,很多学者研究美国投放在日本广岛和长崎的两颗原子弹的核辐射对日本妇女乳腺癌发生率的影响,其中人们接触到的核辐射量(自变量)会随时间的推移逐渐减低,这个自变量就不符合Cox回归模型的假设,此时应该使用考量时间效应的Cox回归模型。
在上一篇的Cox回归模型文章中,我们已经知道是否术中放疗对风险函数(术后患者的生存时间分布)有显著性影响,术中放疗的患者的平均生命时间比没有术中放疗的患者更长。Cox回归模型又称为比例风险模型,因为它对自变量有假设,要求自变量对风险函数的影响不随时间变化而变化。
在Cox回归模型中,可以通过图形来主观判断自变量是否符合上面的假设,如下图所示,在log minus log图形中,两条生存曲线是几乎平行的,可以帮助分析者判断是否术中放疗对风险函数的影响是符合恒定比例假设的。
先回顾一下Cox回归模型:
具有时间依存自变量的Cox回归模型可以分成两种:第一种是自变量的取值不随时间变化,只是同样的自变量取值对生存时间分布的影响效应变化了,这种自变量称为外在时间依存自变量。模型公式可以表示为:
第二种是情况是自变量的取值随时间的变化而变化,从而使得自变量对生存时间分布的影响发生变化,也就是说该自变量是时间t的因变量,这样的自变量称为内在时间依存自变量,例如文章开头提到的核辐射例子。模型可以表示为:
采用含时间依存自变量Cox回归模型判断自变量是否具有时间依存性,通过检验上面模型的回归系数与0是否有显著性差异,如果回归系数与0有显著性差异,说明该自变量具有时间依存性,反之则没有时间依存性,可以直接使用Cox回归模型。
在实际生活中,影响风险函数的自变量经常是会随着时间的改变而改变的,当数据分析者怀疑自变量具有时间依赖性时,那么就意味着这个自变量对风险函数的影响也会随时间的改变而改变,这时可以用含时间依存自变量的Cox回归模型来分析。
案例分析
在医学领域,普遍认为某种疾病的死亡率会受到害怕、压抑和焦虑等不良心理的影响。众所周知,在器官移植领域,需要心脏移植的病人必须等到合适的心脏提供者出现才能进入心脏移植程序。如果没有合适的心脏资源,就需要无限期等待。在人们的主观意识中,合适的心脏资源出现之前和出现之后,等待心脏移植的病人状态是完全不一样的,那么这种心理变化是否会影响生存时间分布呢?美国斯坦福大学曾经针对这个普遍认识进行了一项心脏移植对延长生存时间的研究。数据如下图所示:
分析思路
等待时间表示在合适的心脏资源出现前,病人的等待时间。如果某个需要心脏移植的病人一直没有等到合适的心脏资源,那么将等待时间设置为9999,其它等到心脏资源的病人,其等待时间按实际周数填写。
分析步骤
1、选择菜单【分析】-【生存分析】-【Cox依时协变量】,在跳出的菜单中按照下图操作。T_COV_表示构建的随时间变化的新自变量,这个自变量是通过将原来的自变量X(是否出现合适心脏资源)构建成随时间变化的新自变量。
很明显,是否出现心脏资源与等待时间是相关的,那么新自变量X(t)的构建公式为:(T_<等待时间|等待时间=9999)*0+(T_>=等待时间)*1,新自变量可以表示成下面的形式:
2、点击【模型】按钮,按照下图进行操作,和上一篇文章Cox回归模型的操作过程是完全一致的。
3、点击确定,输出结果。
结果解释
1、模型拟合结果:从结果可知,没有纳入自变量时,模型的-2对数似然值为157.061,纳入T_COV_自变量后,模型-2对数似然值为157.051,仅仅减少了0.01,显著性0.919,大于0.05,说明该自变量对于模型没有贡献。
2、回归系数结果;根据结果可知,新构建的时间依存性自变量X(t)的回归系数估计值为-0.064,显著性为0. 919,也就是说回归系数与0没有显著性差异。该结果说明合适心脏资源出现与否对病人的生存时间分布没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23