京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用python求相邻数的方法示例
本文主要给大家介绍了关于利用python求相邻数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:
什么是相邻数?
比如5,相邻数为4和6,和5相差1的数,连续相差为1的一组数
需求:
遍历inputList 所有数字,取出所有数字,判断是否有相邻数, 不相邻数字 和 相邻数字 都以 “数组”形式 添加到 outputList 中, 并且 每个“数组” 里 第一位 递减 补全两位数,末位 递增 补全两位数, 每一个数不能小于0, 不能大于 400
( 提示: 在inputList 中 "12,13" 是相邻的数字,视为一组, 需要以[10, 11, 12, 13, 14, 15] 数组形式添加到outputList 中,而 “3”没有相邻的数,也视为一组,需要以[1, 2, 3, 4, 5]数组形式添加到outputList中 )

输入:
inputList = [0, 3, 5, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 25, 27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54, 57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114, 116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140, 145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171, 172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193, 195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226, 227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261, 262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284, 286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306, 310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336, 339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367, 368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
输出 :
outputList = [[0, 1, 2] , [1, 2, 3, 4, 5], [3, 4, 5, 6, 7, 8, 9], [7, 8, 9, 10, 11],[10, 11, 12, 13, 14, 15] , ........此处省略]
那,如何解决这个问题?
1. 设置一个值,指向index=0, start_index = 0
2. 初始化一个中间列表median = [ ] , 一个保存结果列表 result_l = [ ]
3. for循环开始, start_index 指向每一个相邻数的开头
4. 通过索引指向的值和索引后指向的值进行差值比较,步长不为1的,start_index移动到这个值上
5. 循环往复,获得相邻列表
6. 通过map函数,对每一个相邻列表进行前后各插入两个相邻数
7. 通过列表解析, 剔除不满足条件的相邻数
示例代码
#!/usr/bin/python3
__author__ = 'beimenchuixue'
__blog__ = 'http://www.cnblogs.com/2bjiujiu/'
def go_cha_ru(new_l):
"""往列表中前后个插入两个相邻数,通过列表解析去除小于0的和大于400的数"""
new_l.insert(0, new_l[0] - 1)
new_l.insert(0, new_l[0] - 1)
new_l.append(new_l[len(new_l) - 1] + 1)
new_l.append(new_l[len(new_l) - 1] + 1)
return [i for i in new_l if 0 <= i <= 400]
def go_xiang_lin(raw_l):
"""获取相邻数"""
start_index = 0
result_l = []
median = []
# 索引从start_index起,到最后
for raw_index in range(len(raw_l)):
# 判断是否for循环到指定位置
if start_index == raw_index:
# 初始移动位置参数
index = 0
while True:
# 指针指向的起始值
start_value = raw_l[start_index]
# 如果指针指向最后一个位置,开始值=最后一个值
if start_index == len(raw_l)-1:
end_value = start_value
else:
# 最后一个值 = 初始值 + 位置参数值
end_value = raw_l[start_index + index]
# 通过初始值 + 位置参数值 是否等于 最后一个值,判断是否为相邻数,如果是,添加到中间列表
if start_value + index == end_value:
median.append(end_value)
# 位置参数 + 1
index += 1
else:
# 如果不是,初始指针指向 移动位置参数个单位
start_index += index
# 把每主相邻数添加到结果列表
result_l.append(median)
median = []
break
# 通过高阶函数,对结果集中每个相邻数列表进行插值操作
return map(go_cha_ru, result_l)
if __name__ == '__main__':
input_list = [0, 3, 5, 6, 7, 9,
12, 13, 15, 16, 17, 19, 20, 21, 22, 25,
27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54,
57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82,
84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114,
116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140,
145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171,
172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193,
195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226,
227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261,
262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284,
286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306,
310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336,
339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367,
368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
# 结果
output_list = list(go_xiang_lin(input_list))
print(output_list)
总结
以上就是这篇文章的全部内容了.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13