京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用python求相邻数的方法示例
本文主要给大家介绍了关于利用python求相邻数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:
什么是相邻数?
比如5,相邻数为4和6,和5相差1的数,连续相差为1的一组数
需求:
遍历inputList 所有数字,取出所有数字,判断是否有相邻数, 不相邻数字 和 相邻数字 都以 “数组”形式 添加到 outputList 中, 并且 每个“数组” 里 第一位 递减 补全两位数,末位 递增 补全两位数, 每一个数不能小于0, 不能大于 400
( 提示: 在inputList 中 "12,13" 是相邻的数字,视为一组, 需要以[10, 11, 12, 13, 14, 15] 数组形式添加到outputList 中,而 “3”没有相邻的数,也视为一组,需要以[1, 2, 3, 4, 5]数组形式添加到outputList中 )

输入:
inputList = [0, 3, 5, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 21, 22, 25, 27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54, 57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114, 116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140, 145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171, 172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193, 195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226, 227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261, 262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284, 286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306, 310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336, 339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367, 368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
输出 :
outputList = [[0, 1, 2] , [1, 2, 3, 4, 5], [3, 4, 5, 6, 7, 8, 9], [7, 8, 9, 10, 11],[10, 11, 12, 13, 14, 15] , ........此处省略]
那,如何解决这个问题?
1. 设置一个值,指向index=0, start_index = 0
2. 初始化一个中间列表median = [ ] , 一个保存结果列表 result_l = [ ]
3. for循环开始, start_index 指向每一个相邻数的开头
4. 通过索引指向的值和索引后指向的值进行差值比较,步长不为1的,start_index移动到这个值上
5. 循环往复,获得相邻列表
6. 通过map函数,对每一个相邻列表进行前后各插入两个相邻数
7. 通过列表解析, 剔除不满足条件的相邻数
示例代码
#!/usr/bin/python3
__author__ = 'beimenchuixue'
__blog__ = 'http://www.cnblogs.com/2bjiujiu/'
def go_cha_ru(new_l):
"""往列表中前后个插入两个相邻数,通过列表解析去除小于0的和大于400的数"""
new_l.insert(0, new_l[0] - 1)
new_l.insert(0, new_l[0] - 1)
new_l.append(new_l[len(new_l) - 1] + 1)
new_l.append(new_l[len(new_l) - 1] + 1)
return [i for i in new_l if 0 <= i <= 400]
def go_xiang_lin(raw_l):
"""获取相邻数"""
start_index = 0
result_l = []
median = []
# 索引从start_index起,到最后
for raw_index in range(len(raw_l)):
# 判断是否for循环到指定位置
if start_index == raw_index:
# 初始移动位置参数
index = 0
while True:
# 指针指向的起始值
start_value = raw_l[start_index]
# 如果指针指向最后一个位置,开始值=最后一个值
if start_index == len(raw_l)-1:
end_value = start_value
else:
# 最后一个值 = 初始值 + 位置参数值
end_value = raw_l[start_index + index]
# 通过初始值 + 位置参数值 是否等于 最后一个值,判断是否为相邻数,如果是,添加到中间列表
if start_value + index == end_value:
median.append(end_value)
# 位置参数 + 1
index += 1
else:
# 如果不是,初始指针指向 移动位置参数个单位
start_index += index
# 把每主相邻数添加到结果列表
result_l.append(median)
median = []
break
# 通过高阶函数,对结果集中每个相邻数列表进行插值操作
return map(go_cha_ru, result_l)
if __name__ == '__main__':
input_list = [0, 3, 5, 6, 7, 9,
12, 13, 15, 16, 17, 19, 20, 21, 22, 25,
27, 29, 30, 32, 33, 36, 39, 40, 43, 44, 46, 47, 48, 53, 54,
57, 58, 60, 62, 64, 65, 66, 67, 72, 74, 75, 76, 77, 78, 80, 82,
84, 85, 86, 89, 95, 96, 97, 98, 103, 104, 107, 108, 110, 111, 114,
116, 117, 118, 120, 121, 122, 124, 127, 132, 135, 137, 138, 139, 140,
145, 146, 148, 149, 150, 151, 155, 156, 160, 161, 166, 167, 170, 171,
172, 175, 178, 179, 180, 181, 182, 183, 184, 186, 188, 189, 190, 193,
195, 196, 198, 202, 205, 208, 210, 211, 213, 214, 215, 217, 221, 226,
227, 228, 233, 234, 235, 240, 241, 246, 247, 249, 255, 257, 258, 261,
262, 263, 267, 268, 269, 270, 271, 272, 275, 278, 280, 282, 283, 284,
286, 287, 289, 291, 292, 295, 296, 298, 300, 302, 303, 304, 305, 306,
310, 315, 317, 319, 320, 321, 322, 323, 324, 325, 326, 328, 331, 336,
339, 341, 342, 344, 346, 349, 354, 355, 356, 362, 363, 365, 366, 367,
368, 371, 374, 376, 378, 382, 383, 388, 390, 393, 396, 399]
# 结果
output_list = list(go_xiang_lin(input_list))
print(output_list)
总结
以上就是这篇文章的全部内容了.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27