京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章主要介绍了Python基于numpy灵活定义神经网络结构的方法,结合实例形式分析了神经网络结构的原理及Python具体实现方法,涉及Python使用numpy扩展进行数学运算的相关操作技巧,需要的朋友可以参考下
本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:
用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!
一、用法
1). 定义一个三层神经网络:

说明:
输入层节点数目:3
隐藏层节点数目:4
输出层节点数目:2
2).定义一个五层神经网络:
'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测
说明:
输入层节点数目:3
隐藏层1节点数目:5
隐藏层2节点数目:7
隐藏层3节点数目:4
输出层节点数目:2
二、实现
如下实现方式为本人(@hhh5460)原创。 要点: dtype=object
import numpy as np
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
# 各层节点数目 (向量)
self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
self.size = self.n.size # 层的总数
# 层 (向量)
self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.a = np.empty(self.size, dtype=object)
self.data_a = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:
import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
self.n_iter = n_iter # 迭代次数
self.error = error # 允许最大误差
self.alpha = alpha # 学习速率
self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
if n_layers is None:
raise '各层的节点数目必须设置!'
elif not isinstance(n_layers, list):
raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
# 节点数目 (向量)
self.n = np.array(n_layers)
self.size = self.n.size # 层的总数
# 层 (向量)
self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.z = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 残差 (向量)
self.data_a = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
# 激活函数
self.active_functions = {
'sigmoid': self.sigmoid,
'tanh': self.tanh,
'radb': self.radb,
'line': self.line,
}
# 激活函数的导函数
self.derivative_functions = {
'sigmoid': self.sigmoid_d,
'tanh': self.tanh_d,
'radb': self.radb_d,
'line': self.line_d,
}
if active_type is None:
self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
else:
self.active_type = active_type
def sigmoid(self, z):
if np.max(z) > 600:
z[z.argmax()] = 600
return 1.0 / (1.0 + np.exp(-z))
def tanh(self, z):
return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
def radb(self, z):
return np.exp(-z * z)
def line(self, z):
return z
def sigmoid_d(self, z):
return z * (1.0 - z)
def tanh_d(self, z):
return 1.0 - z * z
def radb_d(self, z):
return -2.0 * z * np.exp(-z * z)
def line_d(self, z):
return np.ones(z.size) # 全一
def forward(self, x):
'''正向传播(在线)'''
# 用样本 x 走一遍,刷新所有 z, a
self.a[0] = x
for i in range(self.size - 1):
self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i]
self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
def err(self, X, Y):
'''误差'''
last = self.size-1
err = 0.0
for x, y in zip(X, Y):
self.forward(x)
err += 0.5 * np.sum((self.a[last] - y)**2)
err /= X.shape[0]
err += sum([np.sum(w) for w in self.w[:last]**2])
return err
def backward(self, y):
'''反向传播(在线)'''
last = self.size - 1
# 用样本 y 走一遍,刷新所有delta_w, delta_b
self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
for i in range(last-1, 1, -1):
self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
# 计算偏导
p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
p_b = self.data_a[i+1]
# 更新 delta_w, delta_w
self.delta_w[i] = self.delta_w[i] + p_w
self.delta_b[i] = self.delta_b[i] + p_b
def update(self, n_samples):
'''更新权重参数'''
last = self.size - 1
for i in range(last):
self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
def fit(self, X, Y):
'''拟合'''
for i in range(self.n_iter):
# 用所有样本,依次
for x, y in zip(X, Y):
self.forward(x) # 前向,更新 a, z;
self.backward(y) # 后向,更新 delta_w, delta_b
# 然后,更新 w, b
self.update(len(X))
# 计算误差
err = self.err(X, Y)
if err < self.error:
break
# 整千次显示误差(否则太无聊!)
if i % 1000 == 0:
print('iter: {}, error: {}'.format(i, err))
def predict(self, X):
'''预测'''
last = self.size - 1
res = []
for x in X:
self.forward(x)
res.append(self.a[last])
return np.array(res)
if __name__ == '__main__':
nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
X = np.array([[0.,0.], # 准备数据
[0.,1.],
[1.,0.],
[1.,1.]])
y = np.array([0,1,1,0])
nn.fit(X,y) # 拟合
print(nn.predict(X)) # 预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27