
解读大数据行业在2017年的新发展
随着科技的进步,大数据从科学前沿逐渐深入到各行业。2017年中国的大数据行业有什么新动态?大数据行业整体市场规模如何?大数据行业前景如何?如何助力企业发展?今日的比格数据,我们来一起解读大数据行业在2017年的新发展。
大数据行业整体市场规模及预测
整体来看,2017 年中国大数据行业的发展依然呈稳步上升趋势,市场规模达到了 234 亿元,和去年相比增速超过 39%。随着政策的支持和资本的加入,未来几年中国大数据规模还将继续增长,但增速可能会趋于平稳。
大数据在各行业应用状况
企业哪些方面最需要大数据?
根据大数据分析结果,将近一半的企业将大数据运用在企业工商信息管理方面,此外,在社会保障、劳动就业、市政管理、教育科研方面分别占据33.9%,32.7%,29.4%,29%。整体来看,大数据的应用范围广泛。
多少企业应用到了大数据?
大数据分析对企业的发展越来越重要, 35.1%以上的企业已经开始在企业内部应用到了大数据;34.2%的企业正在考虑应用大数据,22.9%的企业在未来1年有应用大数据的计划,仅仅有7.8%的企业暂不考虑应用大数据。
这些企业如何使用大数据?
根据数据显示,38.8%的企业使用实时动态处理大数据并提供分析结果;37.5% 的企业分析历史数据;通过机器学习(+微信关注网络世界),辅助企业管理者更好地决策的企业占比为22.5% 。
各行业大数据的发展水平如何?
我国行业大数据总体发展水平较好,在各行业都有应用。其中,金融大数据、政务大数据的应用水平最高,同时交通、电信、商贸、医疗、教育、旅游等行业大数据的发展水平也有显著提升。
大数据助力企业发展 企业在哪些领域会应用大数据?
大数据应用最广泛的top3领域是营销分析、客户分析和内部运营管理。其中,营销分析占比6成以上;50.2%的企业使用大数据进行客户分析;48.4% 的企业运用大数据进行内部运营管理。
大数据应用对企业的影响
这么多企业应用大数据,大数据将会为这些企业带来什么收益呢?
55.8%的企业表示应用大数据后实现了更智能的决策;应用大数据提升了运营效率的企业占比为48.2%,这两个影响最为显著。应用大数据更好的管理风险,创造新的业务收入,增强生产能力的企业也占有一定比重。
随着大数据技术和机器学习技术的进步,大数据在各行各业的应用还将继续加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03