京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于python元祖与字典与集合的粗浅认识
下面小编就为大家带来一篇基于python元祖与字典与集合的粗浅认识。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
一,元祖(tuple)
1.元祖是不能修改的,通常写成圆括号中的一系列项,位置有序,固定长度
2.实际上元祖支持字符串和列表的一般序列操作,“+”,“*”以及分片操作应用于元祖时会返回新的元祖
print((1,2)+(3,4))>>>>(1,2,3,4)
print((1,2)*4)>>>>(1,2,1,2,1,2,1,2)
T=(1,2,3,4)
print(T【0】,T【1:3】)>>>>(1,(2,3))
3.元祖不提供字符串,列表和字典的方法,入股你相对元祖进行排序,通常先得把它转换成列表才能获得使用排序方法的调用
T=(“z”,"b"."c")
tem= list(T)
tem.sort()
print(tem)>>>> ["b","c","z"]
T=tuple(tem)
print(T) >>>>("b","c","z")
但是元祖内部的列表是可以像往常那样修改的
T=(1,[2,3],4)
T[1].[0] ="ABC"
print(T)>>>>>(1,["ABC",3],4)
二.字典(dict)
1.字典是无序的,即你每次查询的结果数据排序是不一定的,因为它时key-value类型的数据,不需通过下标索引
2.对字典的操作:
D1={} #表示空字典
D2={“spam”:1,"app":2}#两项目字典
D3={"food":{"spam":1,"egg":2}}#嵌套
D2["app"]#通过键进行查找
D3["food"]["spam"]
"egg" in D3 #判断egg是否存在在D3中,存在则返回True
D2.keys()#查询key值
D2.values()#查询value值
D2[key]=44#表示新增或者修改,当字典中不存在这个key则新增,存在则是修改
del D2[key]#删除
D2 = {"egg",1,"app",2}
print(D2["app"])
>>>>>>>2
print(D2)
>>>>>>>{"egg",1,"app",2}
len(D2)
>>>>>>>2#返回的时keys的列表的长度
合并的方法:
D2 = {"egg",1,"app",2}
D3 = {"egg",1,"app",2}
D2.update(D3)
print(D2)
>>>>>>>{"egg",1,"app",2,"egg",1,"app",2}
pop删除的方法:能够删除字典一个键并返回它的值
D2 = {"egg",1,"app",2}
D2.pop(“egg”)
>>>>>>>>1
print(D2)
>>>>>>>>{"app",2}
另一种创建方法:条件是所有的key的值都是一样的
dict.fromkeys(["a","b"],0)
>>>>>>>>>{"a":0,"b":0}
三.集合(set)
集合是一个无序的,不重复的数据重合的。主要作用是用于
(1)去重;把一个列表变成集合,自动去除重复
(2)关系测试;测试两组数据之前的交集,并集等关系
相关操作
s1= set([1,2,3,4,5,6,7])
s2 = set([2,5,4,6,3,9])
print(s1.intersection(s2))#表示取交集
>>>>>>>>{2,4,5,6,3}
print(s1.union(s2))#表示取并集
>>>>>>>>{1,2,3,4,5,6,7,9}
print(s1.difference(s2))#表示差集
>>>>>>>>{7,9}
print(s1.isdisjiont(s2))#表示s与s2是否有交集
>>>>>>>>True
s1.add(10)#添加1个项
s1.update([8,9,10])#添加多个项
s1.remove(1)#删除一项,值为1(指定删除哪个,没有指定会报错)
s1.pop()#随机删除一个数
以上这篇基于python元祖与字典与集合的粗浅认识就是小编分享给大家的全部内容了,希望能给大家一个参考
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13