
排除大数据营销的这7大雷区,挖掘更具价值的宝藏
互联网人总屡出大招。比如,营销界名人李叫兽(李靖)自爆已经连同自己和整个团队一起卖给了百度,他还出任了百度副总裁,才25岁啊,难怪拉仇恨,各个跟互联网、营销相关的群都炸锅了。
还是咱黑马哥比较理性、客观,他说了,别光盯着人家的年龄和资历啊,“谁说公司高管都要有其他大公司的履历,谁说做好自媒体的人当不好副总裁”。他觉得, 李叫兽最大的挑战乃是能否把营销方法论通过机器学习产品化,这既是他个人的难题,也是行业的课题。
在百度高级副总裁向海龙写给内部的邮件中有这么一句:“相信李靖及其团队与百度的人工智能技术、大数据和生态资源相结合,将为广大用户创造更多价值”,说的应该就是李叫兽加入百度以后的重任啦。
这年头说到营销,不扯扯大数据,不说说娱乐化,都不好意思说自己是营销圈中人了。印象中,今年参加过的活动中,没有提及这两个词的几乎没有。
在《大数据时代》一书中,译者周涛引用了苏珊·朗格在《哲学新视野》一书中的一句话:“这种‘宏大概念’突然流行起来,一时间把几乎所有的东西都挤到了一边”,来给那些对大数据没有任何深刻理解,却月月日日分分秒秒穿行于各种“大数据嘉年华”的投资人、媒体人和创业者泼一盆冷水。
很不幸,Soso姐正是这样的媒体人,不过我认为,研究大数据这么专业的事情只能交给“叫兽”级人物,而我们记录与此相关的事件、观点和案例,也很有意义嘛。
从9月到现在,参加过的与营销相关的活动中,有两场给我留下蛮深的印象,其一是9月的2016腾讯全球合作伙伴大会营销分论坛,还有本月由易车车慧和腾讯社交广告联合主办的“D造品牌-2016汽车大数据营销峰会”,原因在于,与会嘉宾的分享对何为大数据,如何用大数据做营销这两个问题做了比较明晰的阐述,并且指出了一些大数据营销中存在的误区。
Soso姐结合平时采访和行业中人探讨所得的一些发现,总结了大数据营销领域目前存在的7个雷区,大家来对照一下,看自己是不是也踩过这样的雷区呢?
雷区一:将大数据等同于海量数据
数据多就能称之为“大数据”吗?
这让Soso姐想起以前在报社,广告部门的同事去谈客户,被问及我们报纸的优势是什么,也有人扯,我们有大数据。那是些什么数据呢?无非就是订阅用户的姓名、单位、职称、电话等等信息而已。事实上,我们连这些用户会不会看到我们的报纸以及登在上面的广告都并不知情,更谈不上对他们的消费习惯、消费需求有半点了解了。
好了,这部分数据算不上大数据,也许是因为数量不够大,那如果让这些“姓名、单位、职称、电话”等信息的数据呈量级增长,就能称之为大数据了吗?显然不是。
因此——
“判断大数据的标准不是基于数量的维度,而是基于场景的维度。”
雷区二:把自家大数据当做宝
还是在《大数据时代》一书中,作者提到,“虽然数据还没有被列入企业的资产负债表,但这只是一个时间问题”,言下之意,大数据无疑是一个企业的宝贵财富。也的确如此,常常当我们问到一些广告公司、营销平台他们的优势是什么时,其抛出来的答案绝对有这一项:大数据。
因此有人戏谑称:“自己看着全是宝,其实什么也没有”,说的正是企业将自家数据封闭起来,形成数据孤岛而造成的价值丧失。
也因此,BAT也好,京东、58等平台也好,都在试图开放数据,通过数据的交叉、渗透和洞察更好地形成数字的生态,比如京腾计划、腾城计划的实施,又比如腾讯在和一些垂直行业平台车慧、滴滴、同程、乐居进行合作,来解决数据单一化的问题,实现交易场景的交互。
雷区三:将大数据视为灵丹妙药
是产品为王还是营销至上,个人认为这已经是一个不需要讨论的问题。但加上了“大数据”这把“灵丹妙药”,就真的有人相信即使产品做不好,靠着对大数据那端痛点的把握,也能靠造造噱头把产品卖出去。
对于那些打一枪换一个鸟窝的,我们就不和他探讨了,对于真想做好产品并借助大数据进行营销的,提醒一句,所谓大数据也是有其局限性的,尤其是在数据开放、交互、智能程度还远远不够的当下,程序化的购买不能完全取代人为的判断,就像新闻资讯推送不能完全依赖机器人,是一样的道理。
雷区四:用平台和服务商的大数据做营销
这个思路当然没错,可是,广告主们别忘了,最有价值的数据恰恰掌握在你们自己手里,最了解你们客户的也正是你们自己,正如同一个campaign的转化效果如何,广告主应该最清楚,而不是依赖于服务商所提供的华丽数据。
说到这里就还是回到了“开放”这一个点上,广告主手里的数据是一座宝矿,但他们是否有开放的心态让服务商们去挖出其中的真金?如果没有,他们的担忧是什么?只有他们自己知道了。
雷区五:大数据营销就是效果营销吗?
刚才说到转化的问题,而大数据营销往往和一个形容词是相伴随而来的,那就是“精准”,因此,往往一提大数据营销,就容易单一地与ROI挂钩,把它与快速、直接地解决短期内销量问题,提升销量目标划等号。
但实际上,大数据营销其实是在品牌和效果两端同时做工作——希望通过品牌营销去提升品牌的关注度以及美誉度;在效果层面通过在线上对用户进行影响,使得用户成为店头集客,最后达成成交,实现销售的闭环。
数据能够帮助广告主更好地做广告投放,而不只是做效果投放,同时可以通过PMP、PDB等方式去做投放,来满足客户对品牌方面的需要。
雷区六:大数据只是帮助投放吗?
刚才说到大数据能够帮助广告主来做广告投放,辣么问题又来了,大数据只是在投放决策前起作用吗?
答案当然是no,这已经是过去时。过去,的确是广告开始投放时,营销决策的过程已经结束,但现在,当广告开始投放时,它才刚刚开始。在广告投放的过程中,需要不断优化数据逻辑,甚至几版创意同时投放并进行监测,在动态的过程中与用户产生交互,让用户决定将在更大范围内投放的创意。
上个月底,百度MOMENTS 营销大会推出“百度思维”智能品牌营销生态系统时,其产品一个很重要的特性正是实时性互动,从前期决策到过程中的投放再到后期的效果评估,全流程打通。
雷区七:围绕需求做营销就足够吗?
Soso姐听一位营销大咖分享过其家庭买车的故事,他的要求是不要买一辆“街车”,而当他们终于做了购买决定以后,发现身边的朋友不谋而合地和他们买了同一品牌的车,换言之,在小范围内,这辆车还是杯具地成为了街车。
问题出在哪里?围绕需求做营销就可以吗?当然不是,除了洞察需求,还要洞察决策的关系链以及他们相互影响的程度。
总而言之,就如同《大数据时代》作者维克托·迈尔-舍恩伯格所言的:在大数据的时代,我们将会意识到最重要的或者真实的数据的力量,不光是要满足这种主要的需求;而且第一手数据只是数据总体价值的冰山一角。
新的一年开启了,愿我们排除雷区,挖掘到冰山底下更有价值的宝藏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10