京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于大数据的新一代城市交通一体化解决方案
当你在手机上的公交App里查询112路还有几站到时,是否觉得这不过就是公交车装上GPS的事儿?当你下班路上在百度/高德看着满城的红色“沦陷区”一筹莫展时,可有抱怨过地图App只能提示拥堵,却并不能解决拥堵?当你在赶往机场的路上被一路红灯道道阻拦、急火攻心时,可曾想过为什么信号灯偏偏跟你过不去?
在对于无人驾驶的畅想中,解决交通拥堵,减少浪费在路上的无谓时间是很多人的美好期待(据2016年数据,北京市工作日平均每天堵车约3个小时)。然而,然而车与车之间的数据共享与时时“沟通”目前看来仍然遥不可及,受限于无线通信标准、车厂合作、政府监管等原因,“车联网”在短期内仍然难以实现。更为棘手的是,司机经常会违背或忽略交通规则,而无人车与行人之间的意识“沟通”仍然是天方夜谭。
既然短时间内无法寄希望于无人驾驶将“堵车”问题一劳永逸地解决,那么目前的智能交通系统能够做些什么?如何在“车辆网”尚未实现的情况下实现车流的控制,交通的疏导?大数据、深度学习又能在其中发挥什么样的作用?
“一座城市每天会产生数千万的海量交通数据,但这些数据以前大多数只能‘沉睡’,不能为人所用。”作为中国智能交通领域连续八年的“隐形冠军”,海信网络科技董事长周厚健认为,目前基于GPS、摄像头、超声波雷达、横断面雷达、地磁感应器等“外部监控网络”形成的天罗地网,已经可以产生足够的数据,来帮助实现“交通交响曲”的宏观指挥。
目前的问题在于,这些数据并未被充分挖掘和利用。
“我们不是去告诉大家哪里拥堵哪里不堵,而是要解决怎样把拥堵变成不堵。”按照周厚健的说法,智能交通解决方案就是通过合理的车流调配,让拥堵的地方松驰一些,让闲置的地方密集一些。通过交通管控平台,给出卡口及红绿灯信号,引导车流流向。
比如,如何借助智能交通系统尽可能实现“一路绿灯”?海信的信号控制专家马晓龙给出了基于人工智能技术的解决方案。通过深度学习模型,以数据大脑为核心,实时监控分析道路车流量,依据动态的交通数据,自动切换和调配信号灯时间,最直观的变化是红绿灯的时间不再固定,甚至全程绿灯不停车。
在海信自适应信号控制系统下,按推荐速度行驶,就可以实现“一路绿灯”。在南昌,15条绿波控制的路段,协调控制方向的行程时间平均减少30%以上,车速平均提高40%以上,交通流量提高15%以上。在青岛,智能交通系统的建设完成让高峰持续时间下降1.48小时,平均速度提高比例提高9.71%。
再比如,如何实现交通堵塞问题的快速疏导?以往对于交通堵塞问题,往往是发生拥堵后十多分钟,交警才收到报警,部署警力前往现场疏导。不仅反应过程长,而且容易导致拥堵加剧和潜在安全事故。
海信建立起基于深度学习的交通预测,“以海量交通数据为基础,分析交通运行的规律性和相似性,建立智能学习模型,通过深度学习去预测流量等交通参数,预知拥堵区域等”。就可以预测拥堵地区和时间,提前进行方案制定、信号调配、诱导信息发布以及警力的部署。
这一切都建立在海信研发的“数据魔方”之上,基于深度学习的交通预测,可在30秒内完成10亿规模交通大数据的可视化分析。
十几年时间里,基于对城市交通数据的持续研究,海信率先提出了基于大数据的新一代城市交通一体化解决方案并不断优化。在全国39个省会城市和计划单列市中,海信的智能交通解决方案已应用于其中28个。
2012到2015年,国内亿元以上的智能交通大项目海信的中标额占比42%,并直接把相关产品的价格拉下2/3。海信的智能交通方案,包括智能调度公交车、智能红绿灯、对突发拥堵进行超前检测等,已经服务国内100多个城市。
在成都,海信将13000多辆公交车接入到智能公交调度系统中,实现全国首例1万台以上公交接入。智能公交调度系统实施后,乘客平均候车时间下降40%,月均投诉下降20%,同时,月均事故下降47%,超速违规行为下降97%。
今年两会期间,在回答媒体追问“是否可以解决像北京这样的大城市拥堵问题”时,身为人大代表周厚健自信地回答: 能! 并“希望北京给海信智能交通一个机会”。周厚健的回答之所以如此充满底气,是因为无论是北京奥运村区域的智能交通管理系统,还是朝阳路、安定路的快速公交系统,都是海信网络参与搭建的。
你也可能会好奇做家电的海信何以成为了智能交通行业的领头羊?实际上,出走家电红海的海信悄然之间已经成为了很多细分领域的“隐形冠军”。目前,海信智能交通成为全国第一,光通信全球第五、接入份额第一,商用空调已位列国内第二。周厚健透露,B2B业务目前已近占海信集团利润的近四成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04