京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于大数据的新一代城市交通一体化解决方案
当你在手机上的公交App里查询112路还有几站到时,是否觉得这不过就是公交车装上GPS的事儿?当你下班路上在百度/高德看着满城的红色“沦陷区”一筹莫展时,可有抱怨过地图App只能提示拥堵,却并不能解决拥堵?当你在赶往机场的路上被一路红灯道道阻拦、急火攻心时,可曾想过为什么信号灯偏偏跟你过不去?
在对于无人驾驶的畅想中,解决交通拥堵,减少浪费在路上的无谓时间是很多人的美好期待(据2016年数据,北京市工作日平均每天堵车约3个小时)。然而,然而车与车之间的数据共享与时时“沟通”目前看来仍然遥不可及,受限于无线通信标准、车厂合作、政府监管等原因,“车联网”在短期内仍然难以实现。更为棘手的是,司机经常会违背或忽略交通规则,而无人车与行人之间的意识“沟通”仍然是天方夜谭。
既然短时间内无法寄希望于无人驾驶将“堵车”问题一劳永逸地解决,那么目前的智能交通系统能够做些什么?如何在“车辆网”尚未实现的情况下实现车流的控制,交通的疏导?大数据、深度学习又能在其中发挥什么样的作用?
“一座城市每天会产生数千万的海量交通数据,但这些数据以前大多数只能‘沉睡’,不能为人所用。”作为中国智能交通领域连续八年的“隐形冠军”,海信网络科技董事长周厚健认为,目前基于GPS、摄像头、超声波雷达、横断面雷达、地磁感应器等“外部监控网络”形成的天罗地网,已经可以产生足够的数据,来帮助实现“交通交响曲”的宏观指挥。
目前的问题在于,这些数据并未被充分挖掘和利用。
“我们不是去告诉大家哪里拥堵哪里不堵,而是要解决怎样把拥堵变成不堵。”按照周厚健的说法,智能交通解决方案就是通过合理的车流调配,让拥堵的地方松驰一些,让闲置的地方密集一些。通过交通管控平台,给出卡口及红绿灯信号,引导车流流向。
比如,如何借助智能交通系统尽可能实现“一路绿灯”?海信的信号控制专家马晓龙给出了基于人工智能技术的解决方案。通过深度学习模型,以数据大脑为核心,实时监控分析道路车流量,依据动态的交通数据,自动切换和调配信号灯时间,最直观的变化是红绿灯的时间不再固定,甚至全程绿灯不停车。
在海信自适应信号控制系统下,按推荐速度行驶,就可以实现“一路绿灯”。在南昌,15条绿波控制的路段,协调控制方向的行程时间平均减少30%以上,车速平均提高40%以上,交通流量提高15%以上。在青岛,智能交通系统的建设完成让高峰持续时间下降1.48小时,平均速度提高比例提高9.71%。
再比如,如何实现交通堵塞问题的快速疏导?以往对于交通堵塞问题,往往是发生拥堵后十多分钟,交警才收到报警,部署警力前往现场疏导。不仅反应过程长,而且容易导致拥堵加剧和潜在安全事故。
海信建立起基于深度学习的交通预测,“以海量交通数据为基础,分析交通运行的规律性和相似性,建立智能学习模型,通过深度学习去预测流量等交通参数,预知拥堵区域等”。就可以预测拥堵地区和时间,提前进行方案制定、信号调配、诱导信息发布以及警力的部署。
这一切都建立在海信研发的“数据魔方”之上,基于深度学习的交通预测,可在30秒内完成10亿规模交通大数据的可视化分析。
十几年时间里,基于对城市交通数据的持续研究,海信率先提出了基于大数据的新一代城市交通一体化解决方案并不断优化。在全国39个省会城市和计划单列市中,海信的智能交通解决方案已应用于其中28个。
2012到2015年,国内亿元以上的智能交通大项目海信的中标额占比42%,并直接把相关产品的价格拉下2/3。海信的智能交通方案,包括智能调度公交车、智能红绿灯、对突发拥堵进行超前检测等,已经服务国内100多个城市。
在成都,海信将13000多辆公交车接入到智能公交调度系统中,实现全国首例1万台以上公交接入。智能公交调度系统实施后,乘客平均候车时间下降40%,月均投诉下降20%,同时,月均事故下降47%,超速违规行为下降97%。
今年两会期间,在回答媒体追问“是否可以解决像北京这样的大城市拥堵问题”时,身为人大代表周厚健自信地回答: 能! 并“希望北京给海信智能交通一个机会”。周厚健的回答之所以如此充满底气,是因为无论是北京奥运村区域的智能交通管理系统,还是朝阳路、安定路的快速公交系统,都是海信网络参与搭建的。
你也可能会好奇做家电的海信何以成为了智能交通行业的领头羊?实际上,出走家电红海的海信悄然之间已经成为了很多细分领域的“隐形冠军”。目前,海信智能交通成为全国第一,光通信全球第五、接入份额第一,商用空调已位列国内第二。周厚健透露,B2B业务目前已近占海信集团利润的近四成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07