京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几乎每一刻我们都在为大数据作出“应有的贡献”
这是我们大多数人司空见惯的一天:早上起床后抓起手机看当天天气预报,然后是查询上班路线,再接下来打开汽车导航,上班后通过互联网查询资料,并不时用手机与外面联系,下班后通过手机APP订餐、购买电影或演出票,回家后通过互联网电视收看节目……“不论你喜欢与否,你的生活已经受控于技术”。在《大数据时代的隐私》一书的作者看来,几乎每一刻我们都在为大数据作出“应有的贡献”。当然,就是这样看似再寻常不过的日常生活,我们一天的行踪、偏好(哪怕有时仅仅只是一个闪念),早就暴露无遗,某种意义上,我们越来越像是一个没有私密可言的“透明人”。
技术就是这样一把双刃剑,既会给你带来诸多便利,同时也会在悄无声息中肆意“偷”走你的信息,根本不在乎你的情绪,这正是本书所要阐明的核心所在。书中每一章都展示了人们在家庭和工作中的日常活动如何成为大数据收集的一部分。或因第一作者本人有过白宫首席信息官的特殊经历,对大数据接触较多,对信息技术更为敏感,所以本书能够针对性提出个人避免隐私泄露的实操举措。此外,本书对改进公共监管举措、完善法律的思考亦不乏真知灼见。
上世纪九十年代,我们曾慨叹生活在一个信息爆炸的年代,今天我们则像是生活在一个数据爆炸甚至过剩的年代。资料表明,全球数据正在迅速增长,大约每18个月翻一番。有专家估计,到2020年全球将会有240亿台连接设备,其中一半是可移动的。届时,全球年数据产生量将会达到2009年的45倍。美国统计学家纳特·西尔弗也在《信号与噪声》一书中指出,在大数据时代,人类一天创造的内容甚至超过人类有史以来的所有内容。在本书作者看来,大数据越是这样蓬勃发展,对公众私密生活的威胁越可能“雪上加霜”。
大数据不仅改变了我们,还“战胜”了我们。2016年的“人机大战”无异于大数据对人类智商的一次不经意“嘲弄”:由谷歌公司研造的人工智能系统阿尔法围棋,挑战世界围棋冠军李世石,最终以4:1获胜。就此,中国科学院院士徐宗本一言以蔽之——人工智能的胜利其实就是大数据的胜利。素以智慧自居的人类败给了自己亲手创造的大数据,这是多么大的讽刺!
“悖论”远不止此,我们甚至还没有大数据更了解自己。举个许多人碰到但又不曾留意的例子。当你在互联网上偶尔点开一本书,你可能很快就会发现,你的电脑页面虽然与别人的大体相同,但你点过的那本书,或者与其关联的信息总会及时出现在页面一角。你原本没什么特别感觉,经这么反复刺激,你很可能在潜移默化中慢慢改变原来的看法,至而生成购买欲。还有,当我们打开APP,刚打出一个字,后面常常会联想出一串信息。这些信息绝非空穴来风,要么因为上了热搜榜,要么因为我们曾经浏览过,或者关注过关联的信息。
大数据蕴含无限商机。“数据挖掘的概念已经存在了至少20年”,“一项数据业务预测2020年企业持有的数据量将超过2012年收集量的30倍”。另一方面,近年来关于大数据泄露公众个人信息的案例屡见不鲜。如果数据的获取没有规则边界,那么就只剩下“裸奔”的利益。媒体多次披露,互联网上的个人信息贩卖已经形成黑色利益链。
内幕触目惊心。商业机构在“盗取”公众个人信息后,常常又以投其所好的方式出现在消费者面前。许多消费者只是觉得越来越方便,而很难意识到这种“贴心”服务是建立在自己信息被泄露基础之上。“我们需要越来越多的数据来满足无止境的欲望,然而我们还从未公开探讨哪些个人信息可以被收集以及如何被利用”。事实上,“信息收集和挖掘技术已经远远超出政府的能力范围,以致难以深思熟虑地通过一项兼顾商业和隐私保护的法律。正因如此,商业公司不知道它不可以做什么,而民众也没有得到保护”。
两位作者郑重指出,在大数据漫天飞舞的今天,只要我们使用手机、电脑、身份证、护照、社保卡、车载卫星定位等,个人信息就一定存在泄露风险。就此,本书从日常生活角度逐一提供技术防范举措。当然,这些举措未必一定确保个人信息的万无一失,但至少可以加上一道密级更高的锁,大大提升泄密的难度。
值得警醒的是,紧步商业机构后尘,一些国家的公共机构亦借大数据技术之利对公民信息“巧取豪夺”。《大数据时代》作者舍恩伯格曾称,“信任是大数据可持续发展的 货币 ”。这里的信任其实应加上引号,因为大多数数据的采集并没有经过被采集者的同意或者授权。2013年,美国中央情报局技术分析员斯诺登向英国《卫报》和美国《华盛顿邮报》泄露了美国国家安全局和联邦调查局启动的一个代号为“棱镜”的秘密监控项目,这也就是至今仍在发酵的“棱镜门”事件。根据斯诺登披露的文件,美国国家安全局可以接触到大量个人聊天日志、存储的数据、语音通信、文件传输、个人社交网络数据。
现实尚且如此,那是否意味,在可预见的未来,随着可穿戴技术和眼球捕捉技术等高科技的突飞猛进,届时无所不在的数据采集会否更令公众束手无策呢?有一点或无疑问,相较而言,今天的数据采集还显得粗放原始。这也就是说,虽然困难很大,从现在开始改进保护个人信息法律,这远比坐等日后数据采集更加泛滥时再纠偏更为容易。想必这也是本书两位作者的良苦用心所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07