
人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能将是最没有价值的技能,几乎一定可以由机器完成;
相反,那些最能体现人的综合素质的技能,例如:
人对于复杂系统的综合分析、决策能力;
由生活经验及文化熏陶产生的直觉、常识;
基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力;
这些是人工智能时代最有价值,最值得培养的技能。
而且,这些技能中,大多数都是因人而异,需要“定制化”的教育或培养,不可能从传统的“批量”教育中获取;
举几个例子:
人类工程师只有去专注计算机、人工智能、程序设计的思想本质,学习如何创造性地设计下一代人工智能系统,或者指导人工智能系统编写最复杂、最有创造力的软件,才可以在未来成为人机协作模式的“人类代表”,多学习机器学习特别是深度学习等未来最有价值的知识;
普通翻译会被取代,但是文学作品的翻译,因为其中涉及到大量人类的情感、审美、创造力、历史文化积淀等,一定是机器翻译无法解决的一个难题;
未来的生产制造业是机器人、智能流水线的天下,人类只有学习更高层次的知识,比如系统设计和质量管控方面,才能体现人类的价值;
未来人们对文化、娱乐的追求会达到一个更高的层次,文娱产业总体规模会是今天的数十倍甚至上百倍。那么,学习文艺创作技巧,用人类独有的智慧、丰富的情感以及对艺术的创造性解读去创作娱乐内容,成为作家、音乐家、电影导演和编剧、游戏设计师等,是证明自己价值最好的方式之一;
科幻作家、雨果奖得主郝景芳说:
很显然,我们需要去重视那些重复性标准化的工作所不能覆盖的领域。
包括什么呢?包括创造性、情感交流、审美、艺术能力,还有我们的综合理解能力、我们把很多碎片连成一个故事这样的讲述能力,我们的体验。
所有这些在我们看来非常不可靠的东西,其实往往是人类只能非常独特的能力。
二、AI时代该如何学习?
学习方法也非常重要,好的学习方法会事半功倍,未来的学习方法包括:主动挑战极限
从实践中学习
关注启发式教育,培养创造力和独立解决问题的能力;
主动向机器学习;
既学习人人协作,也学习人机协作;
学习要追随兴趣;
三、AI时代的教育要关注什么?
未来我们要更关注工作的目标和意义,以及工作背后潜在的社会价值,真正投入到擅长、热爱的领域,要关注以下几个重点问题:
个性化、定制化的教育该如何设计,如何满足不同学生的需要,如何评估定制化教育的效果?
可能需要人工智能技术的帮助,在教学数据被实时采集后,AI技术可以在这个大数据的基础上进行智能分析,帮助人类教育设计者总结得失,监控教学质量,调整课程设计,甚至与人类协作,共同设计新的教学体系
教育如何做到可持续化?最有效的再培训和再教育体系是什么?
未来人们需要大量转换工作,我们的教育体系能否顺利接纳这些人,并帮助他完成再培训?需要社会各层面的积极参与,尤其是社会福利层面的保障
教育体系的设计必须更早、更充分地烤炉全社会的公平性。
在线教育、虚拟现实技术、人工智能技术的组合,也许就是解决教育公平的最佳技术方案
在一个完全定制化的教育体系中,世界上任何一个角落的任何一个学生,都可以根据他的兴趣连接到最适合的老师,享受完全为自己量身定制的课程,得到世界一流的教育。
四、有了AI,人生还有意义吗?
AI时代,机器代劳了一切,我们如何过完一生才最有价值?
会像《机器人总动员》里的人类后代一样懈怠、肥胖吗?
开复老师认为,AI对于人生意义的挑战主要源于人类自身的心理感受。
人之所以为人,正是因为我们有感情、会思考、懂生死。而“感情”“思考”“自我意识”“生死意识”等人类特质,正是需要我们全力培养、发展与珍惜的东西。
不断提高自己,善于利用人类的特长,善于借助机器的能力,这是未来社会里各领域人才的必备特质。
如果不想成为“无用”的人,唯有从现在开始,找到自己的独特之处,拥抱人类的独特价值,成为在情感、性格、素养上都更加全面的人。
AI来了,有思想的人生并不会因此而黯然失色,因为我们全部的尊严就在于思想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04