京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1T数据到底有多大
一英里不是个很长的距离,一立方英里相对于地球也不会让人觉得是个很大的空间。然后我说,这个空间内能装下全世界所有人,你会不会觉到很惊讶?不过这话不是我说的,是美国作家房龙在一本书里写的。
业内有个著名的数据仓库产品,叫Teradata,20多年前起这个名字,显然是想给人能处理海量数据的感觉。可现在,论用户还是厂商,谈论数据量时都常常以T为单位了,动不动就有几十上百T甚至PB级的数据。似乎T不是个多大的数,多几个几十个T也没什么大不了的。
其实T有点像上面说的立方英里,是个挺大的数。很多人对它没有多深的感性认识,我们要换个角度来看1T数据意味着什么。
先从空间上看
用于分析计算的数据仍然以结构化数据为主。结构化数据中占据空间最大的是不断增长的交易类记录,这种数据每条并不大,大概只有几十到100字节,比如银行交易只要记下帐号、日期、金额;电信的通话记录也只是通话号码、时刻、时长等。就按100字节算,也就是0.1K,那么1T空间就可以放下10G行记录,100亿条!
这是什么概念呢?一年大概是3000多万秒,如果用一年时间来积累1T数据,那意味着每秒要产生300多笔记录,24小时不停息!
这个数也不算大,像中国这样的大国,电信运营商、全国级银行以及大型互联公司都不难有这种规模的业务量。但对于一个城市级别甚至有些省级的机构就是个不小的数了,比如税务部门采集的企业交税信息、连锁超市的商品购买数据、城市商业银行的交易记录等,要达到300笔/秒并不容易,何况很多机构只有白天或工作日才能产生数据。而且这还只是1T,要搞到几十上百T,那就得让业务量再上一两个数量级才行。
简单说有多少T数据是没什么感觉的,换算成每秒对应的业务量后,才知道是不是靠谱。大数据分析计算产品的技术方案和数据量相关性非常强,正确估算自己的数据量对于大数据平台的建设是至关重要的。
如果用来存储音频视频这种非结构化数据, 或者仅仅用于备份原始凭据,那1T空间就存不了多少东西了,但这种数据一般也没什么要分析计算的需求,只是存储和检索,那不需要什么大数据计算平台,只要有个网络文件系统就行了,这成本就低多了。
再从时间上看
假设有1T数据,那么要多少时间才能处理一遍?有些厂商宣称能在数秒内处理TB级数据,用户经常也这样期望,这可能吗?
机械硬盘在操作系统下的读取数据大概是150M/秒(不能看硬盘厂商那个指标,根本达不到),固态硬盘快些,能翻个倍。我们就算300M/秒,那么1T数据只是读取不做任何运算也需要3000秒以上,接近一个小时!那怎么可能数秒内处理1T数据呢?很简单,增加硬盘,如果有1000块硬盘,那就可以在3秒左右读出1T数据了。
这还是比较理想的估算。实际上数据不大可能存放着那么整齐(硬盘不连续读取时性能下降严重),集群(1000块硬盘显然不会在一台机器上)还有网络延迟,有些运算可能还有回写动作(大分组和排序等),秒级访问常常还会有并发需求,这些因素综合起来,再慢几倍也是正常的。
现在我们知道了,1T数据意味着几个小时,或者上千块硬盘。而且还是前面的话,这只算了1T,可想而知几十上百T会是什么概念了。
有人说,硬盘太慢了,我们改用内存。
内存是比硬盘快得多,而且还适合并行计算。不过大内存的机器并不便宜(成本不是线性增长的),而且更糟糕的是,内存使用率经常很低。比如许多计算体系都是基于Java平台的,如果不做特别的压缩优化的话,JVM的内存利用率只有20%的样子,也就是硬盘上1T数据需要5T内存才能加载进来,这得装多少机器,花多少钱?
我们对1T有了上面这些感性认识后,听到多少多少T的说法时,就可以随时脑补出交易、节点数、成本等信息。做平台规划和产品选择时,就不容易被忽悠了。Teradata这个名字,今天也还不算过时的。
蒋步星,清华大学计算机硕士,著有《非线性报表模型原理》等
1989年中国国际奥林匹克数学竞赛团体冠军成员,个人金牌。
2000年创立润乾公司,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准。
2008年开始研发不依赖关系型数据的计算引擎,历经多个版本后,于2014年集算器正式发布。有效地提高了复杂结构化大数据计算的开发速度和运算效率。
2016年荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业 • 十大领军人物”。
2017年将带领润乾软件朝着拥有自主产权的非关系型强计算数据仓库、云数据库等产品迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21