京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工作需要—“3思”而后行
传统的电子电气制造业是典型的人口密集型生产行业,企业转型离不开自动化和信息化,而其中物流、信息流、资金流的整合是必不可少的过程,这就需要通过制定有效的管理手段并辅以强大的数据分析工具来实现。
01是否认识到以下这些误区
很多人不明白自己企业当前阶段需要什么程度的数据分析工作,这就会导致当所谓的数据分析平台搭建出来之后,会出现没人用、不好用、没价值的尴尬情况,明明花费了很多人力物力,最后效果却不尽如人意,基层业务部门反馈不好用,领导也不关注,项目烂尾甚至失败都是可能的。
误区一:以多取胜。有些企业在建设数据分析平台时,从业务部门获取到大量的分析指标,开发出成百上千张分析报表,并没有从实际使用者的角度去考虑,容易导致使用者的精力分散。
比如生产车间主任要看某一车间昨日的生产情况,可能就要从产能报表、质量报表、工时效率报表、库存报表等繁多的报表中去寻找自己关心的某一车间某一产品某一工单的信息,费时费力,甚至觉得还不如以前excel报表方便。
误区二:单打独斗。电子电气制造行业的数据分析平台,往往涉及到多个业务部门的数据,包含采购、生产、仓储、物流、销售在内的供应链流程,以及研发、财务、人事等技术或支撑部门,现在很多企业的一些部门会单独建设某一模块的数据分析工作,过于强调各个业务部门的独立性,往往会忽略管理者的使用场景。
比如企业总裁想看目前公司的产销存情况,他可能要从生产、仓储、销售三个部门的报表中找数据,而且还要自己做对比等分析,不能快速的帮助他获取想要的管理数据和分析结果,他主观上可能就觉得这个平台比较鸡肋。
误区三:依赖工具。对于大多数企业来说,拥有一款强大的数据分析工具可以事半功倍,但是过分的依赖工具和强调工具的作用会让管理工作懈怠下来。做数据分析工作必须包含管理的理念在其中。从经验来看,这类的数据分析平台,其意义在于辅助管理决策,而其价值在于可以将一些战略化、口号化的管理理念进行分解可执行化。
比如某一企业的阶段性战略目标是降低成本,在分析库存成本时,通过分析往年产销存情况以及期初期末库存和安全库存,调整最佳平衡点、优化库存结构、提高周转效率、缩小库存空间,来达到降低库存成本的目的。
02是否充分了解使用者的需求
现在很多企业会从客户需求的角度去创造产品,其实做数据分析工作也应该这样。总结众多行业内成功或失败的数据分析平台建设经验,考虑企业各职能层级的工作性质,将数据分析工作分为三个层次,逐层递进、相互补充。
1、基层。一般基层的使用者大多是销售员、采购员、生产班组长之类的业务人员,由于大多数业务流程是在各个业务系统中完成的,所以数据分析平台对于他们来说,主要是起到数据补录和数据查询的作用(基层使用者多数不会分析或者不需要分析,所以在基层开发分析报表作用不大)。
其中数据补录是用来弥补老旧的业务系统中缺失的数据项,数据查询不只是业务系统查询内容的迁移,更重要的是基础信息的整合。如果一项反复工作涉及多个业务系统的查询操作,那么将这些数据整合到统一的平台上来查询可以极大的提高工作效率。
基层报表可以按照业务流程或工种性质来分类,这样更符合他们的使用习惯,所以对基层报表的开发重心是提高工作效率。
2、中层。在不同规模的企业中中层人员可能是某一业务部门负责人、部门中某一模块的负责人,他们对业务系统的依懒性相对基层人员来说是比较低的,他们更关注汇总的数据、整体的情况以及趋势,传统的汇报模式已无法满足他们对数据准确性以及分析灵活性的要求,所以在中层按照关键指标模块化来分类分析报表是更明智的选择。
例如将生产分为工单、库存、物流、设备、质量、成本等模块,每个模块可能涉及一个或多个业务流程的信息。
绝大多数的分析类报表是在中层使用的,通过对比、预警、监控等方法去发现部门工作中的问题,所以对中层报表的开发重心是让管理有理有据。
3、高层。对于企业的决策者和领导者来说,他们更关注结果,关注他们制定的企业战略方针有没有被很好的细化和落实下去,所以按照战略目标的分解和量化来分类报表是很有必要的,报表所展示的信息一定不能脱离企业的战略目标,否则领导不会关注,开发人员白忙活。
高层领导不会关心太细化的指标,他们要的是以几个指标就能掌控全局,所以高层报表不能太多,以3~6张为宜,比如营销情况总览报表中应体现销售总额、利润、计划按时达成率、库存总额、销售效率等指标。
决策者所处的位置让他们没有精力去关注到所有部门的实时情况,可以通过监控、排名等分析手段来输出压力并传达给相应负责人,例如对生产班组或销售小组做top/last分析。
以上,得出结论,对高层报表的开发重心是弱化分析、结果导向、压力输出。
03是否了解数据分析的价值
一个完善的企业级数据分析平台的价值是不可估量的,由于其数据来源于各个业务系统,所以其价值有时很容易和业务系统的价值混淆在一起,无法很好的量化。
之前和国内一大型家电企业CIO聊过这个话题,他基于其公司采用的数据分析平台总结了以下几点价值:
1、打通数据壁垒,实现信息透明。底层搭建数仓,统一数据编码,将多个业务系统数据进行整合,加强部门间信息互通,实现层级间信息垂直透明,促进协作共赢的良好工作氛围。
2、提高工作效率,促进业务增值。代替传统手工报表,减少人为干涉错误,提高数据准确性;人效分析,提高生产效率,节约人力成本;产销存平衡分析,缩短周转周期,提高库存周转率、销售转化率,促进业务不断增值。
3、数据驱动产品,引导创新改良。维修数据分析,反馈质量问题,促进生产、工艺或设计改良;客户需求反馈分析,定位目标功能,引导产品创新。
4、辅助管理预测,提高决策成功率。销售预测分析,辅助市场决策,提高投入产出比;采购预测分析,辅助物料订单管理,提高物料周转率,防止供应商过多备料、物料呆滞。
5、内外数据整合,提升市场竞争力。竞品分析、价格带分析、客户满意度分析,作为企业调整战略目标的参考依据,及时抓住市场机会,提升市场竞争力。
笔者认为其中最大的价值在于能将各个业务系统的价值更高效更直观的体现出来,它提供的是一种分析手段、管理思路和决策方法,而这也正是现在大多数企业所急需的。
对于企业,如何让高层管理决策、输出压力;让中层有据管理,对高层负责;让基层量化任务,精准执行 可以从管理角度来搭建数据分析平台,让数据分析展现的数据驱动业务管理流程的前进。
如果将数据比作海洋,那么各个业务系统就是轻舟、船舶,而数据分析平台则是船桨、发动机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08