
大数据为保险业提供另一种视角_数据分析师
在客户需求的精确锁定方面,大数据给保险业带来了很多便利。以前,对于客户的分类局限于“客户属于哪一类”,而现在,则扩展到“客户是哪一类”。
传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而在互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。
什么星座的人最喜欢买保险?哪个地区的人最喜欢给自己买保险?这些曾经看起来无关乎保费的问题,在互联网大数据时代背景下,也成为了险企定位客户的另一种视角。在泰康人寿的保单中,最喜欢买保险的是天秤座,而最不喜欢买保险的是白羊座;最喜欢给自己买保险的是宁波人,而最不喜欢给自己买保险的则是陕西人。
“上述结论没有什么道理,这是泰康人寿的数据分析出来的。以前,对于客户的分类局限于"客户属于哪一类",而现在,则扩展到"客户是哪一类"。”泰康人寿首席信息官刘大为在日前召开的“互联网大数据与精算创新论坛”上,用几个有趣的结论介绍了大数据时代保险业正在发生的变革。
精准定位
我的客户在这里
“在当前时代背景下,可以运用大数据分析法来整合分析金融保险需求的关联度,在不同方向、专业形式的共同配合下,做好大数据的升级分析整合的系统工程,从客户的角度,综合统筹各种信息,捕捉各种需求,从而寻找潜在的客户,并预测客户的具体需求。”中国保监会原副主席、中国精算师协会创始人魏迎宁在论坛上表示,从保险业来看,在客户需求的精确锁定方面,大数据给我们带来了很多便利。
在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。
以“双十一”当天卖出1.86亿单的退运险为例,据统计,此类产品索赔率在50%以上,对保险公司的利润只有5%左右,仅从保险公司的角度,这类产品并不是很成功,但有很多保险公司都有意、愿意去开发这类保险。魏迎宁分析道:“客户购买退运险后,保险公司就可以获得该客户的基本信息,包括手机号和银行账户信息,并能够了解该客户购买的产品,从而实现精准推送。假设该客户购买并退货的是婴儿奶粉,保险公司就可以估计该客户家中有婴儿,可以向其推荐关于儿童疾病、教育等相关的保险产品,这显然比5%的利润更有吸引力。”
风险可测
传统精算遇危机
互联网大数据不仅为险企带来了另一种找客户的方法,也为险企解释风险的技术带来了革命性的变化。
“从保险业来看,传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。”魏迎宁表示,过去成千上百的人都被放在同一风险水平之上,但事实上这是不可能的,大多数人都在支付多一笔的保费。传统精算研究的是评估数,很少涉及个案,保险公司卖车险的时候,考虑的因素有年龄、性别、婚姻状况、驾驶记录、收入、职业、教育、背景等等,但是,通过大数据的分析,可以解决现有的风险控制问题,为客户制订个性化的保单,运用社交网络,改善产品和服务,影响目标客户,通过对已有信息的分析,保险公司可以获得更准确的定价模型,提供个性化的解决方案,不再像现在一样,所有人都面对相同的风险测量准则。
当然,随着革命性的变化而生的,还有巨大的挑战。中国精算师协会副会长、人保财险副总裁王和在论坛上对精算师提出了两个问题:无人驾驶车的出现,将避免车辆之间发生碰撞,那占了财险保费收入70%以上的车险怎么办?基于物联网的健康管理系统的出现,将使生命成为可知,那健康险还保什么?王和认为,计算科学的发展以及信息技术的突破,将导致“计算能力”出现产品化、商品化和日用品化的趋势,特别是人工智能的出现,将颠覆性地挑战所有“依据规则”生存的职业,包括传统精算。
大数据人才
提高行业竞争力
面向未来,传统的计算工匠将难以生存,但真正的人才将成为最先进的技术。
正如刘大为所言,“在互联网大数据时代,最重要的技术,是人才”。从实际情况来看,大数据人才必须有数学专业背景、懂计算机,而在这些硬件条件之外,论坛嘉宾普遍认为,创新能力更为重要。
魏迎宁表示,不拘泥于现有的等待客户的被动模式,预先发现潜在需求者,精准定位需求,运用大数据分析消费者的需求,将为精算职业发展提供更为广阔的空间。搜集获取、分析与保险需求要素有相关关系的所有数据,找到有保险需求的潜在客户群以及他们具体需要的保险产品,最终由销售人员向他们推荐介绍。这种大数据分享,将对提高保险业竞争力,降低销售误导,重塑保险业规范的品牌形象发挥重要作用。
不过,与数学背景、计算机背景、沟通能力、创新能力相比,刘大为坦言:“最为重要的是好奇心。”刘大为对记者说:“做大数据分析,不会有人告诉你做什么、有人给你他的需求,一定是好奇心促使他们在固有的数据中发现了新的商机、新的服务。在这一点上,"80后"、"90后"找到了很多与众不同的结果。但这种人才是非常少的,因此,保险公司应该在现有的基础上加快对大数据人才的积累,这是一个门槛,更是一种挑战。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28