
在大数据人才时代,懂得跨越行业界限,越过界限,倾听数据的声音,用数据来指导和引领未来。
分会场1:大数据与生物医疗
大数据是改变行业的关键节点,随着生物科技和医疗技术的迅猛发展,生物医疗行业的大数据急剧膨胀。与其它数据行业不同,生物医疗行业的数据呈现分散,破碎,低透明度,以及意义尚等解析等特征。时间推移,生物医疗数据不断累积,数据价值越来越重。加上中国健康人群及患者数量庞大,就越发会产生超海量的数据网络。在大数据时代,生物医疗的未来将何去何从?
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力。
继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。因互联网的迅猛发展,“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题的新方法、新手段。互联网大数据分论坛的几位分享嘉宾结合自己的亲身实际,讲帮我们解读互联网在大数据的指引下的未来。
大数据对于电商发展的作用地位越来越突出,电商纷纷开始重视对大数据的采集和挖掘。尤其随着今天移动互联网的变化,消费习惯也在发生改变,屏幕变小了,数据变大了,大数据更有理由走向前台。一个优秀的电商企业如何在大数据上拔得头筹?电商大数据的未来将会如何?
正相较于传统金融,大数据金融使得抵押贷款模式逐步被信用贷款模式所取代。基于大数据金融的优势,电商、电信运营商、钢铁企业、IT企业等等纷纷利用大数据金融涉足金融行业。那么大数据金融和传统的金融行业相比较究竟有哪些神奇之处?金融大数据的未来又将何去何从?
大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,人工智能将何去何从,几位嘉宾邀您共同探讨大数据与人工智能的未来。
大数据的第一要务就是解决业务问题,从一定程度上来讲就是用数据技术手段来拓展和优化业务。对外,要有清晰的商业模式构想;对内,要有清晰的场景,能用大数据手段提升效率。而BI的应用远大于大数据应用。大数据相对于传统BI,也不仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员也应当正视大数据,要确保BI的传承,还要能顺应大数据时代的发展,数据可视化与商业BI在大数据时代的未来将面临怎样的跌宕起伏?
随着大数据的快速发展和在各个领域中的应用越来越广泛,交通大数据的研究非常活跃,研究的程度也越来越深入,数据技术正在为交通运行管理提供便利,对于促进交通运行的整体效率以及安全性都有着非常重要的意义。交通旅游行业对“大数据”应用的重视逐渐加强,但是大数据应该如何应用于交通旅游业?交通旅游业的发展在大数据的推动下会如何?
目前,全球已进入大数据时代,大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。如何运用大数据帮助投资者提供更为专业化的服务,成为有效的投资者抓手?如何运用大数据来缓解投资顾问服务覆盖不足的缺陷?大数据市场支持下的智慧投资将如何发展?
大数据是一种新一代的技术和架构,具备高效率的捕捉、发现和分析能力,能够经济地从类型繁杂、数量庞大的数据中挖掘出色价值。而随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。数据库与技术实战应该如何在大数据时代跟上潮流?
CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师与拉勾达成的数据分析师招聘专场就是本次活动的另外一个亮点,但是CDA数据分析师依旧奔波在路上……
报名链接:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28