京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据人才时代,懂得跨越行业界限,越过界限,倾听数据的声音,用数据来指导和引领未来。
分会场1:大数据与生物医疗
大数据是改变行业的关键节点,随着生物科技和医疗技术的迅猛发展,生物医疗行业的大数据急剧膨胀。与其它数据行业不同,生物医疗行业的数据呈现分散,破碎,低透明度,以及意义尚等解析等特征。时间推移,生物医疗数据不断累积,数据价值越来越重。加上中国健康人群及患者数量庞大,就越发会产生超海量的数据网络。在大数据时代,生物医疗的未来将何去何从?
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力。
继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。因互联网的迅猛发展,“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题的新方法、新手段。互联网大数据分论坛的几位分享嘉宾结合自己的亲身实际,讲帮我们解读互联网在大数据的指引下的未来。
大数据对于电商发展的作用地位越来越突出,电商纷纷开始重视对大数据的采集和挖掘。尤其随着今天移动互联网的变化,消费习惯也在发生改变,屏幕变小了,数据变大了,大数据更有理由走向前台。一个优秀的电商企业如何在大数据上拔得头筹?电商大数据的未来将会如何?
正相较于传统金融,大数据金融使得抵押贷款模式逐步被信用贷款模式所取代。基于大数据金融的优势,电商、电信运营商、钢铁企业、IT企业等等纷纷利用大数据金融涉足金融行业。那么大数据金融和传统的金融行业相比较究竟有哪些神奇之处?金融大数据的未来又将何去何从?
大数据和人工智能是今天计算机学科的两个重要的分支。近年来,有关大数据和人工智能这两个领域所进行的研究一直从未间断。其实,大数据和人工智能的联系千丝万缕。首先,大数据技术的发展依靠人工智能,因为它使用了许多人工智能的理论和方法。其次,人工智能的发展也必须依托大数据技术,需要大数据进行支撑。大数据时代背景下,人工智能将何去何从,几位嘉宾邀您共同探讨大数据与人工智能的未来。
大数据的第一要务就是解决业务问题,从一定程度上来讲就是用数据技术手段来拓展和优化业务。对外,要有清晰的商业模式构想;对内,要有清晰的场景,能用大数据手段提升效率。而BI的应用远大于大数据应用。大数据相对于传统BI,也不仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员也应当正视大数据,要确保BI的传承,还要能顺应大数据时代的发展,数据可视化与商业BI在大数据时代的未来将面临怎样的跌宕起伏?
随着大数据的快速发展和在各个领域中的应用越来越广泛,交通大数据的研究非常活跃,研究的程度也越来越深入,数据技术正在为交通运行管理提供便利,对于促进交通运行的整体效率以及安全性都有着非常重要的意义。交通旅游行业对“大数据”应用的重视逐渐加强,但是大数据应该如何应用于交通旅游业?交通旅游业的发展在大数据的推动下会如何?
目前,全球已进入大数据时代,大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。如何运用大数据帮助投资者提供更为专业化的服务,成为有效的投资者抓手?如何运用大数据来缓解投资顾问服务覆盖不足的缺陷?大数据市场支持下的智慧投资将如何发展?
大数据是一种新一代的技术和架构,具备高效率的捕捉、发现和分析能力,能够经济地从类型繁杂、数量庞大的数据中挖掘出色价值。而随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。数据库与技术实战应该如何在大数据时代跟上潮流?
CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师与拉勾达成的数据分析师招聘专场就是本次活动的另外一个亮点,但是CDA数据分析师依旧奔波在路上……
报名链接:

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12