
在大数据时代中,如何更快地即时分析巨量数据,成为新的创业契机。来自台湾的团队「核桃运算MacroData」,从最底层的数据分析架构出发,耗费两年半的时间,研发出可分析不同资料属性,以及横跨各式硬体的资料分析引擎,比起现有的资料库来说,运算速度还要快50倍到100倍,今年下半年将正式走入市场。
令人意外的是,核桃运算一开始并非瞄準大数据商机。核桃运算的灵魂人物薛文蔚,是台大资工系第一届学生,毕业取得哥伦比亚大学资工博士学位后,先到华尔街工作两年,在1995年开始创业,开发教育平台。2000年回到台湾 ,在知名的软体公司Computer Associates负责亚洲地区的合资公司业务,随后在台湾成立供应链管理公司「联合通商eBizprise」,和在中国的子公司「eBizServe」。
2011年,薛文蔚遇到一个中国大陆大型零售商的供应链预测问题。当20万个品项、上万个通路,再加上要做100週的预测时,资料共有惊人的上百亿点,如此庞大的资料量,传统的资料库无法负荷。他发现市场空缺后,找来公司裡两位同事黄怡诚和赖育骏,一同成立研发团队。
虽然本来是从供应链管理的问题切入,但深入研究后薛文蔚却发现,这是大数据的问题。他解释,现在用的资料库技术都是1970年时提出的架构,很多理论是基于当时的假设,「但当底层条件已经改变时,我们不该再用过去的模式想事情。」于是团队从非常底层的架构重新思考,适合现在使用的运算模式是什么。
其中最大的差异是,过去资料运算时,需先从资料储存的地方如硬碟,搬到记忆体运算后,再把资料放回去。但现在的资料量早已是过去的好几千万倍,薛文蔚打个比方:「Data的成长就好像房价一样,Code的成长则好像薪水一样。」
如果沿用过去搬动资料的运算方式,大多时间都是花在「搬移」上,因此核桃运算主张透过不搬动的「in-place computing」运算方式,直接把程式送到资料的所在地运算,少了搬移动作,资料运算速度就会提昇很多。目前团队已申请四项美国专利,其中叁项已被核准。
比起现有的资料库运算方式,核桃运算共同创办人陈元贞解释,以目前知名的Hadoop来说,透过分散式运算,把1部机器要算的东西放到100部机器上算,虽能提升运算速度,但却不是每个公司都能负担的起部建分散式运算系统。
若是非关联式的NoSQL资料库,数据存储没有一定的模式架构,虽然速度可以变快,但也因为不需固定模式,当要做两者的比较分析或资料採矿就有些困难。若是传统的MySQL资料库,更是无法负荷现在庞大的资料量。
从2011年下半年先在母公司联合通商旗下成立团队开始,众人花了两年半时间研发,终于在今年推出产品「Big Object」,团队也在今年2月从母公司独立。Big Object主要运行在64 bit的装置上,因为採用「in-place computing」,最大优势就是快,运算速度可快50倍至100倍,因此可做到当下的即时分析。
此外,Big Object也能分析异质性资料,不只企业本身的商务资料,也能结合open data和非结构性资料,像是零售业者可和天气预测或脸书贴文交叉比对。「就像冰山一样,本来你只看到交易资料,可是更多的是你没有看到水面底下的资料,」陈元贞说。
也因为Big Object是很轻巧的资料运算引擎,在未来物联网时代,小至眼镜、手錶,大到汽车、冰箱,每个装置都能成为分析资料的机器,因此这些装置也都可以嵌入Big Object的分析引擎,根据数据做出最优化的预测或行动,如调整车速、冰箱温度等。
Big Object主要针对BI产品(Business Intelligence,从数据分析中挖掘商业价值)或LOG分析的软体开发商,可直接将Big Object嵌入在软体裡,收入以授权年费为主。目前核桃运算已有些试用客户,像是在台湾就已和神坊资讯旗下的购物网站合作,透过Big Object计算商品间的相关性,进而做出即时的购物推荐。
产品到位后,今年下半年Big Object将开始走入市场,目前处于客户开发阶段。陈元贞表示,由于这类应用主要在美国市场居多,因此今年3月团队也在美国註册公司,预计今年在台湾和美国都要各自招募十人团队,未来台湾负责研发,美国则负责业务。
核桃运算四位共同创办人,从左至右为赖育骏、薛文蔚、黄怡诚和陈元贞
【创业教我的事】找出自己的定位,在过程中随时保有自己的判断,尤其是对产品和市场策略的看法。
Q1. 希望提供这个社会什么价值? 最主要是提供一个快速又可负担的分析引擎,帮助资料分析者或商业决策者,发掘出隐含在大量资料背后的资讯。
Q2. 长远来看,贵公司想成为何种类型的公司?
我们希望做到「资料处理界的Intel」,未来软体内可以搭载BigObject的运算核心,不管是CRM、ERP、BI或是Log分析软体,都能透过BigObject的即时分析而有更优化的软体功能。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28