
一般在建立好Cox模型之后,需要对模型进行诊断。诊断内容包括模型的前提条件,诸如Cox模型的PH假定(比例风险假定),共线性假定等。本篇我们通过合实际例子讲解Cox模型诊断过程,实现软件R语言。
1.1 COX模型的诊断内容
Cox模型的诊断一般包括三方面的内容:
比例风险假定;
模型影响点(异常值)识别;
比例风险的对数值与协变量之间的非线性关系识别;
对上述三方面的诊断,常见的方法为残差法。
Schoenfeld残差用于检验比例风险假定;
Deviance残差用于影响点(异常值)识别;
Martingale残差用于非线性检验;
1.2 R中用于评估Cox模型的包
我们将会用到以下两个包:
survival #用于cox模型建立
survminer #用于cox模型诊断结果的可视化
安装包
install.packages(c("survival","survminer"))
加载包
library("survival")
library("survminer")
1.3 建立Cox模型
我们利用survial包中自带的肺癌数据“data(lung)”建立cox模型。
library("survival")
res.cox <- coxph(Surv(time, status) ~ age + sex +wt.loss, data =lung)#模型中有三个变量;
res.cox#显示模型结果
Call:
coxph(formula = Surv(time, status) ~ age + sex + wt.loss,data = lung)
coefexp(coef) se(coef) z p
age 0.02009 1.02029 0.00966 2.08 0.0377
sex -0.52103 0.59391 0.17435 -2.99 0.0028
wt.loss 0.00076 1.00076 0.00619 0.12 0.9024
Likelihood ratio test=14.7 on 3 df, p=0.00212
n= 214, number of events= 152
(14 observationsdeleted due to missingness)
1.4 模型诊断——PH假定
PH假定可通过假设检验和残差图检验。正常情况下,Schoenfeld残差应该与时间无关,如果残差与时间有相关趋势,则违反PH假设的证据。残差图上,横轴代表时间,如果残差均匀的分布则,表示残差与时间相互独立。
R语言survival包中的函数cox.zph()可以实现这一个检验过程。
test.ph <- cox.zph(res.cox)
test.ph
rhochisq p
age -0.0483 0.3780.538
sex 0.1265 2.3490.125
wt.loss 0.0126 0.0240.877
GLOBAL NA 2.8460.416
从上面的结果可以看出,三个变量的P值都大于0.05,说明每个变量均满足PH检验,而模型的整体检验P值0.416,模型整体满足PH检验。
在R语言 survminer中ggcoxzph( )函数可以画出Schoenfeld残差图。
ggcoxzph(test.ph)
上图中实线是拟合的样条平滑曲线,虚线表示拟合曲线上下2个单位的标准差。如果曲线偏离2个单位的标准差则表示不满足比例风险假定。从上图中可见,各协变量满足PH风险假设。
另一种检查比例风险假定的图形方法是绘制log(-log(S(t)))与t或log(t)是非平行,这个方法只能用于协变量是分类变量的情形。
如果违反比例风险假设可以通过以下方式解决:
模型中添加协变量与时间的交互相应;
分层分析;
至于如何实现,我们后期再做介绍。
我们可以通过绘制Deviance残差图或者dfbeta值实现上述诊断。在R语言survminer中ggcoxdiagnostics()函数可以画出Deviance残差图。
ggcoxdiagnostics(res.cox,type = "deviance",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
残差值均匀的分布在0上下,表明满足上述假定。
ggcoxdiagnostics(res.cox,type = "dfbeta",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
影响点的可能来源于数据录入错误,样本中的极值点、协变量不均衡,数据不足等。对本例,上图显示,将dfbeta值大小与回归系数比较表明,即使某些dfbeta值非常大,但它们不足以对模型系数的估计值产生影响。
1.6 模型诊断——非线性诊断
一般情况下,我们假设协变量与-log(s(t))之间是线性关系。通过绘制Martingale残差图可以实现模型协变量的非线性诊断。非线性诊断一般是针对模型中的连续型变量。
在R语言survminer中ggcoxfunctional()函数可以画出Martingale残差图。
ggcoxfunctional(Surv(time, status) ~ age + log(age) + sqrt(age),data = lung)
![]()
图中显示年龄局部有非线性趋势,但整体表现出线性趋势。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08