京公网安备 11010802034615号
经营许可证编号:京B2-20210330
家居智能 需要大数据三重境界
上世纪80年代,智能家居这个词刚出现。近几年,随着互联网快速的发展,智能家居逐渐走向大众生活。当今我国智能家居行业逐渐进入快速成长期,据市场分析报告预计,智能家居行业将以年均19.8%的速率增长,在2015年产值达1240亿。
市场前景如此广阔,但目前大多数厂商没有真正做出卓有成效的产品,导致这一现象的关键在于大数据。有了终端,有了互联网,智能家居的轮廓基本能够描绘出来。但这些还只能实现家居的“互联化”而非“智能化”。大数据才是真正实现从家居“互联化”迈向“智能化”的关键。可以说,没有大数据支撑的智能家居,还只是一群智能伪军。
小鲸认为,大数据并非数字的堆积,它分为三个层次,普遍化、差异化和动态化。最终目的应当是一个动态的调整,以达到智能化的要求。
第一,大数据要具备足够的积累,了解大众的普遍需求。这一功能要求,智能家居要采集足够多的数据样本,以分析大众对某一款设备的普遍接受范围。比如,大众普遍适应的室温、空气湿度、吸尘器的档位等等,在初始设定时,达到智能化的效果。这一方面,要求采集的样本足够多。因此,家电行业传统的巨头往往更容易占据优势。比如海尔最近发布的星盒,就是一款智能温控器,它依托的是海尔在家电领域多年以来的数据积累。根据数据的积累,找到最适合大众用户感受的温度。而这款星盒作为智能家居领域的先锋,后续将会向起他智能家居拓展,而海尔在家电领域多年来的积累,能够更加提升智能化水平。而这是大数据的第一层意义。
第二,大数据要在数据积累的同时,满足个性化和差异化的需求。大众化只能适用于普遍的规律,而不同用户的实际需求是不同的。这需要大数据具备“学习”能力,能够根据用户的具体习惯,形成差异化的设定。同样以星盒为例,其智控模式,能够自动学习用户使用空调的习惯,根据实时的地区、月份、室内外温湿度、白天/夜晚等因素综合判断,通过星盒自学习算法,经过一周用户习惯的学习,生成用户专属的作息曲线,这是大数据“学习”的典型案例。此外,星盒还具备多种模式可供选择,比如好睡眠模式,能够根据用户所在地区和室内外温湿度环境,以及用户之前一周睡眠时的使用习惯记录,自动生成用户专属的睡眠曲线运行。大数据实现差异化的设定,是智能家居的第二个层级。
第三,大数据需要做到动态调整。用户的需求存在差异,不仅是指个体之间的差异,还包含在个体内部,不同环境下的不同需求。这就要求,大数据能够根据差异化的需求,进行动态调整。海尔星盒在控制室内湿度时,能够实时检测室内湿度,当湿度超过一定范围时,空调会自动开启除湿模式。爱宝宝模式能够根据用户所处地区、宝宝年龄、实时室内外温湿度等环境,经星盒环境数据中心计算,得出适合宝宝的温湿度,并进行动态优化。动态调整是大数据在智能家居领域第三个层次的应用。它能够最大限度地减少用户人工调整,实现智能化。
评价:
智能家居如果离开大数据,是远远无法真正实现“智能化”,这也是目前市场上诸多开发者只能停留在概念层次而无法达到实际操作层次的原因。市场前景十分广阔,但只有真正实现了大数据的普遍化、差异化和动态化的厂商,才能抢占市场,构建生态系统。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27