
家居智能 需要大数据三重境界
上世纪80年代,智能家居这个词刚出现。近几年,随着互联网快速的发展,智能家居逐渐走向大众生活。当今我国智能家居行业逐渐进入快速成长期,据市场分析报告预计,智能家居行业将以年均19.8%的速率增长,在2015年产值达1240亿。
市场前景如此广阔,但目前大多数厂商没有真正做出卓有成效的产品,导致这一现象的关键在于大数据。有了终端,有了互联网,智能家居的轮廓基本能够描绘出来。但这些还只能实现家居的“互联化”而非“智能化”。大数据才是真正实现从家居“互联化”迈向“智能化”的关键。可以说,没有大数据支撑的智能家居,还只是一群智能伪军。
小鲸认为,大数据并非数字的堆积,它分为三个层次,普遍化、差异化和动态化。最终目的应当是一个动态的调整,以达到智能化的要求。
第一,大数据要具备足够的积累,了解大众的普遍需求。这一功能要求,智能家居要采集足够多的数据样本,以分析大众对某一款设备的普遍接受范围。比如,大众普遍适应的室温、空气湿度、吸尘器的档位等等,在初始设定时,达到智能化的效果。这一方面,要求采集的样本足够多。因此,家电行业传统的巨头往往更容易占据优势。比如海尔最近发布的星盒,就是一款智能温控器,它依托的是海尔在家电领域多年以来的数据积累。根据数据的积累,找到最适合大众用户感受的温度。而这款星盒作为智能家居领域的先锋,后续将会向起他智能家居拓展,而海尔在家电领域多年来的积累,能够更加提升智能化水平。而这是大数据的第一层意义。
第二,大数据要在数据积累的同时,满足个性化和差异化的需求。大众化只能适用于普遍的规律,而不同用户的实际需求是不同的。这需要大数据具备“学习”能力,能够根据用户的具体习惯,形成差异化的设定。同样以星盒为例,其智控模式,能够自动学习用户使用空调的习惯,根据实时的地区、月份、室内外温湿度、白天/夜晚等因素综合判断,通过星盒自学习算法,经过一周用户习惯的学习,生成用户专属的作息曲线,这是大数据“学习”的典型案例。此外,星盒还具备多种模式可供选择,比如好睡眠模式,能够根据用户所在地区和室内外温湿度环境,以及用户之前一周睡眠时的使用习惯记录,自动生成用户专属的睡眠曲线运行。大数据实现差异化的设定,是智能家居的第二个层级。
第三,大数据需要做到动态调整。用户的需求存在差异,不仅是指个体之间的差异,还包含在个体内部,不同环境下的不同需求。这就要求,大数据能够根据差异化的需求,进行动态调整。海尔星盒在控制室内湿度时,能够实时检测室内湿度,当湿度超过一定范围时,空调会自动开启除湿模式。爱宝宝模式能够根据用户所处地区、宝宝年龄、实时室内外温湿度等环境,经星盒环境数据中心计算,得出适合宝宝的温湿度,并进行动态优化。动态调整是大数据在智能家居领域第三个层次的应用。它能够最大限度地减少用户人工调整,实现智能化。
评价:
智能家居如果离开大数据,是远远无法真正实现“智能化”,这也是目前市场上诸多开发者只能停留在概念层次而无法达到实际操作层次的原因。市场前景十分广阔,但只有真正实现了大数据的普遍化、差异化和动态化的厂商,才能抢占市场,构建生态系统。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26