京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而是存在复杂的传导机制。中介分析作为探究这种机制的重要方法,能够揭示自变量(X)如何通过中介变量(M)影响因变量(Y),即 “X→M→Y” 的路径。SPSS 作为常用的统计分析工具,是实现中介分析的重要载体。本文将系统解读如何通过 SPSS 进行中介分析,并对结果进行科学解读。
中介分析的核心是验证 “中介效应” 的存在性,即自变量 X 对因变量 Y 的影响是否部分或全部通过中介变量 M 实现。根据中介效应的强弱,可分为完全中介(X 对 Y 的直接效应消失,仅通过 M 影响 Y)和部分中介(X 对 Y 仍有直接效应,但部分效应通过 M 传导)。
进行中介分析需满足以下前提假设:
变量关系:X 与 Y、X 与 M、M 与 Y 均存在一定的相关性(可通过相关分析预先验证);
数据特征:样本量充足(建议≥200,确保结果稳定性),变量测量可靠(如信效度达标);
无多重共线性:X 与 M 之间的共线性程度较低(VIF 值通常建议<10)。
SPSS 中实现中介分析主要通过逐步回归分析结合显著性检验完成,经典步骤遵循 Baron 和 Kenny(1986)提出的四步法,具体操作如下:
操作:在 SPSS 中选择 “分析→回归→线性”,将 Y 设为因变量,X 设为自变量,运行回归分析。
核心指标:关注 X 的回归系数(c)及显著性(p 值)。若 p<0.05,说明 X 对 Y 存在显著总效应,可继续中介分析;若不显著,中介分析必要性较低。
操作:同样通过线性回归,将 M 设为因变量,X 设为自变量。
核心指标:关注 X 的回归系数(a)及显著性(p 值)。若 p<0.05,说明 X 对 M 存在显著影响,满足中介效应的前提条件。
操作:将 Y 设为因变量,同时纳入 X 和 M 作为自变量进行回归。
核心指标:关注 M 的回归系数(b)及显著性(p 值)。若 p<0.05,说明 M 对 Y 存在显著影响,中介路径 “X→M→Y” 初步成立。
操作:通过Sobel 检验或Bootstrap 法验证中介效应(ab)的显著性。SPSS 需通过 “宏程序” 或插件(如 Process)实现:
Sobel 检验:计算 Z 值(Z=ab/SEab),若 | Z|>1.96(p<0.05),则中介效应显著;
Bootstrap 法:更推荐的方法(无需满足正态分布假设),通过抽取样本计算置信区间,若 95% 置信区间不包含 0,则中介效应显著。
SPSS 输出的中介分析结果包含多个统计量,需重点关注以下核心指标:
回归系数(B):反映变量间影响的绝对大小。例如,模型 1 中 X 的 B 值表示 X 每变化 1 单位,Y 的平均变化量;模型 2 中 X 的 B 值表示 X 每变化 1 单位,M 的平均变化量;模型 3 中 M 的 B 值表示 M 每变化 1 单位,Y 的平均变化量(控制 X 后)。
标准化系数(β):消除量纲影响,用于比较不同变量的效应大小。β 绝对值越大,影响越强。
若模型 1 中 X 的效应显著(c≠0),模型 3 中 X 的效应仍显著(c’≠0)且 M 的效应显著(b≠0),则为部分中介;
若模型 1 中 X 的效应显著(c≠0),模型 3 中 X 的效应不显著(c’=0)但 M 的效应显著(b≠0),则为完全中介。
以 “工作压力(X)通过职业倦怠(M)影响离职意向(Y)” 的研究为例,SPSS 输出结果如下:
模型 1(X→Y):
回归系数 B=0.42,p=0.001(<0.05),R²=0.18。
解读:工作压力对离职意向有显著正向影响(总效应显著),可解释离职意向 18% 的变异。
模型 2(X→M):
回归系数 B=0.53,p=0.000(<0.05),R²=0.28。
解读:工作压力对职业倦怠有显著正向影响,即工作压力越大,职业倦怠越严重。
模型 3(X+M→Y):
M 的回归系数 B=0.31,p=0.002(<0.05);
X 的回归系数 B=0.25,p=0.023(<0.05),R²=0.35。
解读:职业倦怠对离职意向有显著正向影响,且控制职业倦怠后,工作压力仍对离职意向有显著影响(但效应减弱),说明存在部分中介;模型解释力提升至 35%,表明职业倦怠在其中发挥了中介作用。
Bootstrap 检验:
中介效应值 ab=0.53×0.31=0.164,95% 置信区间为 [0.07,0.26](不包含 0)。
解读:中介效应显著,即工作压力对离职意向的影响中,约 39%(0.164/0.42)通过职业倦怠传导。
样本量与方法选择:小样本(n<200)建议使用 Bootstrap 法(样本量≥5000 次重复抽样),避免 Sobel 检验的正态分布假设偏差;
变量测量质量:中介变量的操作性定义需清晰,测量工具需经过信效度检验(如 Cronbach’s α>0.7),否则会导致结果失真;
因果关系推断:中介分析仅能验证变量间的统计关联,需结合理论基础和研究设计(如纵向数据)推断因果,避免 “相关即因果” 的误区;
多重中介的扩展:若存在多个中介变量,需使用 SPSS 的 Process 插件进行链式中介或并行中介分析,避免遗漏关键路径。
中介分析是揭示变量关系深层机制的有效工具,通过 SPSS 的回归分析结合显著性检验,可系统验证中介效应的存在性与类型。解读结果时,需紧扣回归系数、显著性、决定系数等核心指标,并结合研究理论判断中介效应的实际意义。掌握中介分析的 SPSS 结果解读方法,能为学术研究和实践决策提供更精准的依据,推动从 “是什么” 到 “为什么” 的认知升级。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05